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1  |  BACKGROUND

Accurate species identification is a key prerequisite for ecological, 
evolutionary, and conservation studies (Cope et al., 2012; Wang 
et al., 2022). Phenotypic characteristics such as leaf shape are the 

most intuitive and effective indicators for species identification. 
Leaf shape, the core of taxonomy and systematics, is recognized 
as a trait with great functional significance (Nicotra et al., 2011). 
However, plant identification by leaf shape can be challenging be-
cause of natural hybridization, introgression, and incomplete lineage 
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Abstract
Plant phenotypic characteristics, especially leaf morphology of leaves, are an impor-
tant indicator for species identification. However, leaf shape can be extraordinarily 
complex in some species, such as oaks. The great variation in leaf morphology and 
difficulty of species identification in oaks have attracted the attention of scientists 
since Charles Darwin. Recent advances in discrimination technology have provided 
opportunities to understand leaf morphology variation in oaks. Here, we aimed to 
compare the accuracy and efficiency of species identification in two closely related 
deciduous	oaks	by	geometric	morphometric	method	(GMM)	and	deep	learning	using	
preliminary	identification	of	simple	sequence	repeats	(nSSRs)	as	a prior. A total of 538 
Asian	deciduous	oak	trees,	16	Q. aliena and 23 Q. dentata populations, were firstly as-
signed	by	nSSRs	Bayesian	clustering	analysis	to	one	of	the	two	species	or	admixture	
and this grouping served as a priori identification of these trees. Then we analyzed 
the shapes of 2328 leaves from the 538 trees in terms of 13 characters (landmarks) 
by	GMM.	Finally,	we	trained	and	classified	2221	leaf-	scanned	images	with	Xception	
architecture	using	deep	learning.	The	two	species	can	be	identified	by	GMM	and	deep	
learning using genetic analysis as a priori. Deep learning is the most cost- efficient 
method	in	terms	of	time-	consuming,	while	GMM	can	confirm	the	admixture	individu-
als' leaf shape. These various methods provide high classification accuracy, highlight 
the application in plant classification research, and are ready to be applied to other 
morphology analysis.
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sorting (Darwin, 1872; Rieseberg et al., 2006).	Fortunately,	 recent	
advances in discrimination technology have provided opportunities 
to understand leaf shape variations. However, a detailed comparison 
of the accuracy and efficiency of this species identification method 
is lacking.

Traditional morphological methods of leaf shape measurement 
of quantitative and qualitative variables such as distances, angles, 
areas, and number of veins can be effectively for species iden-
tification (Henderson, 2006;	Kremer	et	al.,	2002; Marcus, 1990). 
However, such variables often do not share common units and 
comparable ranges of variation, and identification results are 
frequently affected by leaf size and are unlikely to intuitively ex-
press leaf shape variation in an interpretable figure (Mitteroecker 
&	Gunz,	2009). To solve this problem, geometric morphometric 
method	 (GMM)	digitizes	 the	original	 geometry	of	 the	 leaf	 shape	
based on the Cartesian coordinates of landmarks and gener-
ates	 quantitative	 descriptions	 of	 leaf	 shape	 (Klingenberg,	 2011; 
Ray, 1992;	 Zelditch	 et	 al.,	 2004). The multivariate statistics of 
GMM	 can	 visualize	 leaf	 shape	 variation	 by	 translation,	 scaling,	
and rotation, regardless of the leaf location, direction, and size, 
making	 the	 results	 more	 intuitive	 and	 efficient	 (Mitteroecker	 &	
Gunz,	2009;	Viscosi	&	Cardini,	2011). In particular, there is doc-
umentary evidence of generating quantitative descriptions of 
leaf shape, and these have been found to be quite effective for 
comparing shapes within and among species (Du et al., 2022; Li 
et al., 2021; Liu et al., 2018; Viscosi et al., 2009). However, the 
above method assumes some known shape attributes or land-
marks	and	might	miss	small	interactive	effect	(Fu	et	al.,	2017).

Modern molecular techniques provide another method for spe-
cies identification by classifying individuals in pure or mixed gen-
otypes without priori	 information	 (Guichoux	et	al.,	2011; Pritchard 
et al., 2000). Microsatellite analysis has frequently been used to as-
sess the frequency of alleles between species under the assumption 
that species taxonomy is unknown (Agarwal et al., 2008;	Guichoux	
et al., 2011). In particular, when using morphological characteristics 
for species classification, a priori grouping using microsatellite mo-
lecular approaches could provide a more reliable identification of 
species.

With the rapid development of machine learning, image- based 
deep learning methods have been increasingly applied in the field 
of plant recognition using machine self- learning to identify key 
features	from	massive	image	data	(Hinton	&	Salakhutdinov,	2006; 
Pawara et al., 2017;	Sun	et	al.,	2017). The wide application of deep 
learning is based on the rapid development of multilayered neu-
ral networks with three main parts: an input layer, a hidden layer 
(the processing core), and an output layer, which provides a tool-
box for high- dimensional data (Olden et al., 2008). Convolutional 
neural network (CNN) was introduced by LeCun et al. (1989) as a 
supervised feedforward neural network algorithm. Owing to its 
ease of training and generalization, CNN has become a common 
neural network for image processing (LeCun et al., 2015). CNN 
has been widely used in various fields, including target detection 

(He et al., 2015), and speech recognition (Hinton et al., 2012), and 
made remarkable contributions to the application of image clas-
sification (Liu et al., 2019).	 In	 2014,	 GoogLeNet	 (Inception	 V1)	
won the championship at ImageNet large- scale visual recognition 
challenge	 (ILSVRC),	 later	 refined	 as	 Inception	 V2	 and	 Inception	
V3	 (Ioffe	 &	 Szegedy,	 2015;	 Szegedy,	 Liu,	 et	 al.,	 2015;	 Szegedy,	
Vanhoucke, et al., 2015).	 The	 Xception	 is	 an	 improved	 version	
underlying	 the	 Inception	 architecture,	 standing	 for	 “Extreme	
Inception” (Chollet, 2017).	 The	 Xception	 architecture	 is	 a	 linear	
stack of deeply separable convolutional layers with residual con-
nections. A depth- wise separable convolution can be understood 
as an inception module with a maximally large number of towers. 
It is a novel deep convolutional neural network architecture in-
spired by inception that performs well on the ImageNet dataset 
(Chollet, 2017).	 Experimental	 evaluation	 of	 the	 Xception	 model	
found	that	the	top-	5	accuracy	of	the	Xception	for	classification	on	
the ImageNet database was 94.5% (Chollet, 2017). Compared with 
previous traditional machine learning algorithms, image acquisi-
tion can quickly convert plant morphological information into ab-
stract feature maps by deep learning without human supervision, 
greatly simplifying the process of plant phenotypic data acquisi-
tion (Christin et al., 2019).

Quercus L. (oaks) is one of the most diverse and ecologically 
important tree genera in Northern Hemisphere, with high species 
diversity	in	North	America	and	South-	East	Asia	(Denk	et	al.,	2018). 
High frequency of natural hybridization and introgression con-
found the interspecific boundary, making oak species identifica-
tion extremely complex (Darwin, 1872;	Gerber	et	al.,	2014; Manos 
et al., 1999; Rieseberg et al., 2006). In addition, wide geographic 
distribution and a variety of environmental conditions strongly influ-
ence leaf variation, making morphological characteristics alone weak 
for	distinguishing	oak	species	(Maya-	García	et	al.,	2020; Nagamitsu 
et al., 2020). Therefore, oaks are considered to be classic models for 
species identification (Viscosi et al., 2011).

In this study, we selected two closely related Asian white oak 
species, Quercus aliena Blume and Quercus dentata Thunberg, 
which belong to a small monophyletic group of oak species (Hipp 
et al., 2020; Hubert et al., 2014). Q. aliena and Q. dentata are 
the main forest tree species making up the mountainous vege-
tation	areas	of	East	Asia.	They	have	a	wide	geographic	distribu-
tion, mainly distributed on sunny slopes with an altitude range 
of 100–2000 meters and often co- occur side by side in some 
forests (Huang et al., 1999). Previous studies showed that both 
species can be discriminated by leaf shape (Du et al., 2022; Liu 
et al., 2018). However, a single method is not sufficient to iden-
tify species. Combining the evidence of morphological, molecular, 
and deep learning can effectively improve the classification of in-
dividuals and result in a higher resolution of species delimitation 
(Beatty et al., 2016; Rellstab et al., 2016). In this study, we system-
atically sampled individual trees of Q. aliena and Q. dentata dis-
tributed	in	China	and	used	GMM	and	deep	learning	to	answer	the	
following questions: (1) Can the two related species be identified 
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through	GMM	and	deep	 learning	based	on	a	priori	 identification	
by genetics? (2) What is the accuracy and efficiency of the above 
approaches for species identification? (3) Their potential applica-
tion in other morphology analysis.

2  |  MATERIAL S AND METHODS

2.1  |  Genotypic and morphological data

As	ecological	character	displacement	(ECD)	might	occur	in	its	sym-
patric distribution we deliberately excluded the co- occurring sites in 
this study because the discrimination rate in sympatry is higher than 
92% by morphology assignment for the species pair (Du et al., 2022). 
In short, we conducted a random sampling of 538 individuals from 
39	natural	 oak	 populations	 spaced	over	 30 km	 apart,	 including	16	
Q. aliena populations and 23 Q. dentata populations, covering nearly 
the entire distribution in China (Figure S1, Table S1).	For	each	popu-
lation, we collected three to six fully developed and mature leaves 
from each individual along the four cardinal directions in the middle 
layer	of	the	canopy,	at	least	10 m	apart.	Genotypic	data	of	the	538	
individuals using 12 nuclear microsatellite loci and four fluorescent 
dyes were from Du et al. (2022). Loci with non- overlapping allele size 
ranges were labeled with the same fluorescent dye, whereas those 
with overlapping allele size ranges were labeled with different dyes 
and resolved individually because of the different characteristic 
emission spectra of each dye. Morphological data of 2328 leaves with 
13 landmarks were from Du et al. (2022) (Figure 1, Table S3). These 
landmarks were converted to 13 pairs of Cartesian coordinates (x, 
y)	as	raw	input	data	for	morphological	analysis	(Klingenberg,	2011).

2.2  |  Model- based clustering using genetic data

We employed Bayesian cluster analysis to assign individuals to 
K clusters without any species identification information using 
Structure v. 2.3.4 (Pritchard et al., 2000). The program was imple-
mented in 200,000 Markov Chain Monte Carlo cycles (MCMC), fol-
lowing 100,000 burn- in cycles. We performed 20 iterations for each 
K value ranging from 1 to 10. To determine the most likely number 
of clusters, we used Pr(X|K) and ΔK implemented in the Structure 
HarveSter	program	(Earl	&	VonHoldt,	2012;	Evanno	et	al.,	2005). We 
then used an admixture coefficient (Q) value to define whether the 
sampled individuals were purebreds or admixtures with a threshold 
value of 0.9, based on previous work in oaks (Lepais et al., 2009; Liu 
et al., 2018;	Peñaloza-	Ramírez	et	al.,	2010; Viscosi et al., 2012). This 
dataset served as a priori classification for Q. aliena and Q. dentata. 
In addition, we performed a principal coordinate analysis (PCoA) 
based on the genetic distance matrix using Genalex	v.	6.5	(Peakall	
&	Smouse,	2012) and displayed the distribution frequency of prin-
cipal component (PC) scores for all individuals to visualize the indi-
viduals' genetic proximities using the “vegan” package in R (Oksanen 
et al., 2022).

2.3  |  Multivariate analyses of leaf morphology

We	first	performed	a	generalized	procrustes	analysis	(GPA)	to	mini-
mize the difference between the corresponding landmarks by trans-
lation, scaling, and rotation using the MorpHoJ program (Figure 1) 
(Klingenberg,	2011;	 Rohlf	&	Slice,	1990).	 Five	outliers	 that	 signifi-
cantly deviated from the average configuration were excluded as 
default setting. We created a wireframe, and sets of lines linking 
the landmarks in a configuration, that can be used to visualize shape 
changes.	Finally,	we	generated	a	covariance	matrix	of	 the	average	
configuration at the leaf- level for the leaf shape variation analysis 
(Viscosi et al., 2009).

To visualize the differences in leaf shape between species, we 
conducted two distinct multivariate statistical analyses using the 
MorpHoJ program, utilizing the genetic delimitation of Q. aliena and Q. 
dentata individuals as grouping variables for species discrimination. 
The first analysis employed canonical variate analysis (CVA), while 
the	second	employed	discriminant	analysis	(DA)	(Klingenberg,	2011). 
These two methods aim to combine the original variables into inde-
pendent composite variables that explain the largest part of the total 
variation in leaf shape. CVA maximizes the separation of specified 
groups based on Procrustes and Mahalanobis distances with per-
mutation tests (T2 statistics; 10,000 permutations per test) to inves-
tigate three or more groups. DA mainly focuses on the difference 
between two groups through cross- validation scores classification 
with T2 statistics (p value for tests with 1000 permutations <.0001; 
Klingenberg,	2011).

2.4  |  Deep learning discrimination based on image 
recognition

We used a total of 2221 scanning images for deep learning classifica-
tion comprising 539 Q. aliena images, 1202 Q. dentata images, and 
480 admixture images determined through genotyping (Figure 1). To 
achieve clear classification, we manually divided all images into the 
following four data sets: Q. aliena (539 images) vs. Q. dentata (1202 
images), Q. aliena (539 images) vs. admixture (480 images), Q. den-
tata (1202 images) vs. admixture (480 images), and Q. aliena (539 
images) vs. Q. dentata (1202 images) vs. admixture (480 images). 
We randomly divided each data set into three subsets for training, 
validation,	and	testing	in	the	proportion	of	70:	15:	15.	We	then	used	
the	Xception	architecture	with	36	convolutional	layers	to	form	the	
feature extraction base of the network. A rectified linear unit was 
used as the activation function (Figure 2)	 (Nair	 &	 Hinton,	 2010). 
We	selected	SoftMax	 function	as	 the	classifier.	The	 training,	 veri-
fication, and testing data sets were implemented on NVIDIA Tesla 
K80	GPUs	using	the	TensorFlow	2.0	framework	(Abadi	et	al.,	2016). 
We	visualized	 testing	data	using	 t-	distributed	Stochastic	Neighbor	
Embedding	 (t-	SNE)	 tools	 by	 giving	 each	 datapoint	 a	 location	 on	 a	
two-	dimensional	map	(Van	der	Maaten	&	Hinton,	2008).

Optimal model parameters (convolutional kernel and batch nor-
malization) were selected using the training data and applied to the 
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test data set for estimating prediction performance. Different indi-
cators are obtained to evaluate the classification results. The clas-
sification accuracy rate (predicted value/true value) was calculated 
as follows:

Here, the true positive rate (TP) indicates accurate positive iden-
tifications are correctly predicted, and true negative rate (TN) indi-
cates	accurate	negative	identifications	are	correctly	predicted.	False	
negative	rate	(FN)	indicates	that	a	true	observation	is	predicted	to	
be	different.	False	positive	rate	(FP)	indicates	that	the	observation	is	
different but predicted as true. Additionally, it is important to con-
sider more detailed parameters:

Accuracy =
TP + TN

TP + TN + FP + FN

F I G U R E  1 Strategy	for	leaf	shape	
identification by geometric morphometric 
method	(GMM)	and	deep	learning	with	
the genetic analysis served as a priori 
classification.
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A high recall indicates that the species is correctly recognized (a 
small	number	of	FN).	A	high	Precision	indicates	that	an	example	labeled	
as	positive	is	indeed	positive	(a	small	number	of	FP).	Although	there	is	
no necessary correlation between precision and recall based on the 
calculation formula, they are often interdependent in large- scale data 
sets. Therefore, it is necessary to consider both parameters equally. 
The	F-	score,	calculated	as	the	harmonic	mean	of	precision	and	recall,	
provides a comprehensive measure (Narkhede, 2018):

2.5  |  Effectiveness measurement of 
different methods

We compared and quantified the efficiency of different approaches 
for species identification using a time- effectiveness and cost- 
effectiveness metric by converting the cost of experimental con-
sumables and labor. Taking a sample size of 1000 as an example: 
for genotyping, we required five plant genomic DNA extraction kits 
(Tiangen, Beijing, China) at a cost of 1000 RMB each. The estimated 
cost for PCR, including reagents (PCR kit, unlabeled primers, labeled 
primers, and labeled size standard) and consumables, was 5 RMB 
per reaction, with a requirement of 120 reactions. The total cost of 
capillary electrophoresis detection is 10,000 yuan. Thus, the total 
cost	 of	 the	 experimental	 consumables	 amounted	 to	 17,146	 RMB.	
For	salary	cost,	the	researchers	involved	in	this	experiment	were	50	
RMB/h. The total time required for DNA extraction and PCR am-
plification	of	1000	samples	was	400 h,	resulting	in	a	cost	of	21,500	
RMB.	Consequently,	the	total	cost	of	species	identification	by	nSSR	
was	37,046	RMB,	which	 is	 similar	 to	 the	pseudo-	multiplexing	SSR	
genotyping	cost	reported	by	Guichoux	et	al.	(2011) despite in differ-
ence in the salary cost in different countries.

For	 geometric	morphology,	 five	 leaves	were	 scanned	 for	 each	
individual,	for	10 min.	Each	leaf	was	marked	with	13	landmarks	and	
exported	data,	this	process	required	8 min	for	each	individual	 (five	
leaves). Researchers involved in this process, without the need for 
a scientific background, were paid 50 RMB/h for their labor. The 
total time required for leaf scanning and marking 1000 samples was 
300 h.	Consequently,	 the	 total	cost	of	species	 identification	based	
on geometric morphology is 15,000 RMB.

For	 deep	 learning,	 it	 takes	 1	min	 to	 arrange	 leaf	 pictures	 ran-
domly, rename them, and clearly label the classification for each 
image. Researchers involved in this progress, which required back-
ground knowledge in artificial intelligence, were paid 100 RMB/h for 
their labor. Thus, the total cost amounted to 8333 RMB based on the 
calculation	of	(1/60) × 5 × 1000 × 100.

3  |  RESULTS

3.1  |  Genotyping assignment

Using	the	Bayesian	clustering	method	implemented	in	Structure, we 
found that Delta K and LnP (K) statistics strongly suggested presence 
of two major clusters in the dataset (Figure 3a, Figure S2). Based on 
a threshold value Q of 0.9, we assigned 248 individuals to pure Q. 
dentata (Q ≤ 0.1),	132	individuals	to	pure	Q. aliena (Q ≥ 0.9),	and	158	
individuals	 to	 the	 admixture	 (0.1 < Q < 0.9)	 (Figure 3a). In addition, 
PCoA results based on the genetic distance matrix at the individual 
level showed significant genetic differentiation between Q. aliena 
and Q. dentata with admixture intermingled, largely concordant with 
the Structure analysis (Figure 3b). In this study, genetic data were 
used as a priori for both leaf morphology analysis and deep learning 
identification.

3.2  |  Leaf morphological variation

The CVA score plots revealed significant morphological differences 
between Q. aliena and Q. dentata. Mixed individuals were scattered 

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F − score =
2∗Precision∗Recall

Precision + Recall

F I G U R E  2 The	schema	of	Xception	model	with	36	convolutional	layers.
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between the two species, closer to the Q. dentata cluster (Figure 4a). 
The transformation grids showed that the main differences between 
Q. aliena and Q. dentata was in the patterns of expansion and con-
traction from the base to the apex of the leaf (Figure 4a). Q. dentata 
leaves exhibited shorter petiole (distance between LM1 and LM2), 
wider blade tip (distance between LM5 and LM10), deeper lobes 
(distance	between	LM7	and	LM12),	and	relatively	narrower	basal	re-
gion (distance between LM8 and LM13) than Q. aliena leaves along 
the CV1 axis (Figure 4a).

The DA results also revealed significant morphological differ-
ences between Q. aliena and Q. dentata, largely concordant with the 
CVA results (Figure 4b, Table 1, T2 = 2432;	p < .0001).	DA	achieved	
a high discriminant rate of 98.3% between Q. aliena and Q. dentata 

(Figure 4b, Table 1).	Furthermore,	in	pairwise	comparisons,	99%	and	
98% of Q. aliena and Q. dentata (Figure 4b),	89%	and	71%	of	Q. aliena 
and admixture (Figure 4c),	and	86%	and	57%	of	Q. dentata and ad-
mixture (Figure 4d) were correctly identified, respectively.

3.3  |  Accuracy of deep learning discrimination

We trained and evaluated four data sets for Q. aliena, Q. dentata, and 
admixture	based	on	the	Xception	architecture.	The	test	accuracy	ex-
hibited rapid improvement from the initial epoch, stabilizing after 
20 epochs for the data sets of Q. aliena vs. Q. dentata and Q. aliena 
vs. Q. dentata vs. admixture (Figure S3a,d).	Extracting	features	from	

F I G U R E  4 Leaf	geometric	
morphometric	analysis.	(a)	Scatter	plot	
of the canonical variate analysis (CVA) 
at individual level with 90% confidence 
ellipses. Transformation grids represent 
the extreme leaf shape of Quercus 
aliena, Quercus dentata, and admixture. 
Discriminant analysis (DA) for the leaf 
shape differentiation of (b) Quercus aliena 
vs. Quercus dentata, (c) Quercus aliena vs. 
admixture, and (d) Quercus dentata vs. 
admixture.

F I G U R E  3 Genetic	assignment	and	
differentiation between Quercus aliena 
and Quercus dentata.	(a)	Structure	analysis	
for K = 2	with	different	populations	
separated by black lines. (b) Principal 
component analysis (PCoA) for Quercus 
aliena, Quercus dentata, and admixture, 
with the distribution frequency of the PC1 
and PC2 values plotted on the top and 
right sides of the scatter plot. Percentage 
of total variance explained by each axis is 
noted in brackets.
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the leaf images revealed strong aggregation characteristics within 
images of the same species, enabling accurate species identification 
for the Q. aliena and Q. dentata data sets (Figure 5).	The	Xception	
architecture trained on images of Q. aliena and Q. dentata performed 
well, with an accuracy rate of 95.8% and an F- score of 0.9 (Table 2). 
However, the results showed that the recognition accuracy was the 
lowest for the data set of Q. dentata, Q. aliena, and admixture (ac-
curacy: 44.5%, F- score: 0.3). The discrimination between Q. aliena 
and the admixture exhibited a higher accuracy rate than Q. dentata 
and the admixture, suggesting that the admixture displayed greater 
morphological similarity to Q. dentata	 (accuracy:	 71.8%	 vs.	 67.9%,	
Table 1).

3.4  |  Cost comparison of species identification

A cost analysis comparing the three different methods for species 
identification revealed that as the number of sampled individuals in-
creased,	the	total	time	and	cost	of	nSSR	exceeded	those	of	geomet-
ric morphology and deep learning methods (Figure 6a,b).

4  |  DISCUSSION

In this study, we conducted a comparative analysis to evaluate the 
accuracy and efficiency of the geometric morphology and deep 
learning methods in discriminating closely related oaks, using ge-
netics as a priori classification. Our analysis focused on leaf shape 
variation, which is related to the physiological characteristics of 
the	species.	Considering	the	intuitive	shape	of	plant	species,	GMM	
allows leaf shape variation to be more visualized than traditional 
morphological measurements. In addition, we used deep learning, 
an artificial intelligence approach with the ability to process large 
and complex datasets, to discriminate oak species and highlight 
the role of the potential of artificial intelligence techniques in spe-
cies identification.

4.1  |  Species identification using genetic 
assignment as a priori

Inference regarding species identification based on genetic data 
alone is likely inadequate, and species identification should be 

conducted considering morphology (Carstens et al., 2013). There 
are two approaches to this integration. One is the morphologi-
cal differences serve as the basis for taxonomic hypotheses that 
are	validated	using	genetic	data	(e.g.,	Gugerli	et	al.,	2007; Welton 
et al., 2013). The other is interpreted as morphologic variation in 
the context of identification from genetic data as a robust meth-
odology to support the results of species identification (e.g., Liu 
et al., 2018;	 Stech	et	 al.,	2013). In our study, we used the latter 
approach for species identification of the two oaks using genetic 
analysis	as	a	priori.	Using	the	Bayesian	approach,	we	successfully	
assigned over 90% of the samples to one of two distinct clusters 
corresponding to the previously described species, making it pos-
sible to estimate the genetic structure of each species and identify 
cases of introgression.

If no single morphological recognition trait exists in two re-
lated species, multivariate analyses are ideal tools to identify 
parameters that differentiate between groups of individuals 
(Rellstab et al., 2016). The results of CVA indicated that there 
was some variation in the leaf shape of Q. aliena and Q. dentata, 
with admixture individuals exhibiting intermediate leaf shapes. 
Notably, the difference in leaf shape between Q. aliena and Q. den-
tata was mainly concentrated in the leaf tip and base according 
to the transformation grid. When the admixture was influenced 
by both parent species, their leaf shape represented an average 
leaf shape of both, but the confidence ellipse overlap was larger 
and the leaf shape was more similar to that of Q. dentata. In DA 
comparisons,	 and	 71%	 and	 89%	 of	 the	 admixture	 and	Q. aliena, 
57%	and	86%	of	the	admixture	and	Q. dentata trees were correctly 
classified, respectively, which was consistent with the CVA result 
that the shape of admixture individuals was close to Q. dentata. 
These morphological analyses revealed significant differences be-
tween species and highlighted those mixed genotypes (admixture 
individuals) are a mosaic of phenotypes with intermediate char-
acteristics	 of	 the	 parental	 species	 (Gugerli	 et	 al.,	 2007; Viscosi 
et al., 2009).

We also used deep learning, a convolutional neural network that 
automatically extracts image features without manual intervention, 
to extract the leaf features. This approach overcame the limitations 
of traditional plant leaf recognition that relied on manpower based on 
the	Xception	architecture	with	excellent	classification	accuracy	and	
good generalization ability. Our deep learning analysis, used high- 
resolution scanned leaf images with a uniformly white background, 
which was not a photograph taken in the habitat, minimizing errors 

Category
Proportion of 
discriminant (%)

Discriminant 
rate (%)

Procrustes 
distance T- square p- value

Q. aliena 98.8 98.3 0.12 2432.8 <.0001

Q. dentata 97.9

Q. aliena 89.4 79.3 0.07 243.9 <.0001

Admixture 70.5

Q. dentata 86.4 74.3 0.05 183.0 <.0001

Admixture 57.1

TA B L E  1 The	discriminant	rate	of	
geometric	morphometric	method	(GMM)	
on Q. aliena, Q. dentata, and admixture 
based on the data of cross- validation in 
discriminant analysis (DA).
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introduced by the machine learning algorithm. In the deep learning 
analysis, a higher mean discrimination was observed between Q. ali-
ena and Q. dentata with a higher detection index accuracy. When 
the admixture individuals were considered as a separate taxon and 
verified by three classifications, the accuracy index was 45%, consis-
tent	with	the	GMM	result	indicating	that	admixture	individuals	could	
not be accurately identified because of their intermediate form. 
Interestingly, the resolution between admixture individuals and Q. 
dentata was lower, supporting the finding that the leaf shape of ad-
mixture individuals was more similar to that of Q. dentata, which is 

consistent	with	the	results	of	CVA	in	GMM.	These	findings	suggest	
that oaks retain high levels of fitness variation, with Q. aliena being 
more favored by the selection of leaf morphological traits.

4.2  |  Comprehensive comparison of different 
identification methods

When comprehensively comparing the different methods for 
plant species identification, it is sensible to consider the overall 

Group Precision Recall Accuracy (%) F- score

Q. aliena vs. Q. dentata 0.9 0.9 95.8 0.9

Q. aliena vs. Admixture 0.8 0.6 71.8 0.7

Q. dentata vs. Admixture 0.8 0.5 67.9 0.6

Q. aliena vs. Q. dentata vs. Admixture 0.3 0.3 44.5 0.3

TA B L E  2 Classifier	performance	for	
test	different	groups	with	Xception	model.

F I G U R E  5 Last	layer	feature	mapping	obtained	by	t-	distributed	Stochastic	Neighbor	Embedding	(t-	SNE)	for	different	classifications	of	
(a) Quercus aliena vs. Quercus dentata, (b) Quercus aliena vs. admixture, (c) Quercus dentata vs. admixture and (d) Quercus aliena vs. Quercus 
dentata vs. admixture.
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classification accuracy of the results as well as the accuracy and ef-
ficiency	of	the	resources.	Using	a	variety	of	approaches,	we	found	
that each has its own advantages and limitations in plant species 
identification. We used the molecular level as the criterion to iden-
tify the two oak species and their admixture, and subsequently com-
bined	GMM	and	deep	learning	methods	to	analyze	the	identification	
of Q. aliena, Q. dentata, and admixture. The identification results of 
nSSR	provide	a	genetic	basis.	However,	nSSRs	require	a	large	num-
ber of molecular experiments making it time- consuming and costly.

Plant morphological identification was implemented by qualita-
tive comparison to distinguish differences in leaf traits among spe-
cies, transforming species image information into data for statistical 
analysis. We acquired a large amount of leaf shape information from 
the images, simplifying the process of morphological data collec-
tion	 compared	 to	 traditional	 morphological	 measurements.	 GMM	
can digitize phenotypic characteristics based on manually extracted 
landmarks, providing reliable quantitative approaches to leaf shape 
variation (Viscosi et al., 2011).	In	particular,	GMM	has	demonstrated	
its utility in studying shape variations and identifying developmen-
tal patterns across various landmarks in individuals, using tools 
such as MorpHoJ and the R package shapes (Chitwood et al., 2016; 
Viscosi, 2015).	However,	GMM	requires	strong	subjective	judgment	
in the manual marking of the feature selection.

Deep learning has been successfully used to identify related spe-
cies, providing valuable insights for the identification of other spe-
cies	 (Işık	et	al.,	2021). Deep learning eliminates the manual search 
for suitable characteristics by automatically learning relevant char-
acteristics, shortening the classification time, and improving the 

discrimination accuracy for this specific application. Compared with 
GMM,	deep	learning	shows	advantages	 in	accuracy,	as	well	as	sig-
nificant advantages in terms of cost and time, and in large samples. 
However, deep learning method requires a large number of basic im-
ages to distinguish individuals with similar phenotypes. The results 
from	GMM	and	deep	learning	indicated	that	leaf	shape	analysis	can	
effectively distinguish the two species. Deep learning is particularly 
advantageous	in	inter-	species	identification,	while	GMM	is	better	at	
identifying mixed individuals and pure individuals, as well as visualiz-
ing the shape difference. Deep learning showed a greater advantage 
in species identification because feature extraction in deep learning 
contains	more	 than	 13	 landmarks	 in	 GMM.	 Feature	 extraction	 of	
leaves can be further enhanced to improve the accuracy of identi-
fication, and the overall leaf morphology can be clearly presented 
by enhancing the leaf vein characteristics based on the original data 
(Grinblat	et	al.,	2016).

In this study, we achieved favorable identification results be-
tween two related species using deep learning. However, compli-
cated as oaks further verification is required to determine whether 
the deep learning model can be applied for their identification. The 
leaf shape was the only characteristic used in the classifiers in our 
study.	Given	the	degree	of	leaf	morphology	similarity,	and	incorpo-
rating additional features such as flower, vein, or pollen microscopic 
imaging into the classifier, better performance of species identifica-
tion might be expected.
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