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1  |  BACKGROUND

Accurate species identification is a key prerequisite for ecological, 
evolutionary, and conservation studies (Cope et  al.,  2012; Wang 
et al., 2022). Phenotypic characteristics such as leaf shape are the 

most intuitive and effective indicators for species identification. 
Leaf shape, the core of taxonomy and systematics, is recognized 
as a trait with great functional significance (Nicotra et  al.,  2011). 
However, plant identification by leaf shape can be challenging be-
cause of natural hybridization, introgression, and incomplete lineage 
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Abstract
Plant phenotypic characteristics, especially leaf morphology of leaves, are an impor-
tant indicator for species identification. However, leaf shape can be extraordinarily 
complex in some species, such as oaks. The great variation in leaf morphology and 
difficulty of species identification in oaks have attracted the attention of scientists 
since Charles Darwin. Recent advances in discrimination technology have provided 
opportunities to understand leaf morphology variation in oaks. Here, we aimed to 
compare the accuracy and efficiency of species identification in two closely related 
deciduous oaks by geometric morphometric method (GMM) and deep learning using 
preliminary identification of simple sequence repeats (nSSRs) as a prior. A total of 538 
Asian deciduous oak trees, 16 Q. aliena and 23 Q. dentata populations, were firstly as-
signed by nSSRs Bayesian clustering analysis to one of the two species or admixture 
and this grouping served as a priori identification of these trees. Then we analyzed 
the shapes of 2328 leaves from the 538 trees in terms of 13 characters (landmarks) 
by GMM. Finally, we trained and classified 2221 leaf-scanned images with Xception 
architecture using deep learning. The two species can be identified by GMM and deep 
learning using genetic analysis as a priori. Deep learning is the most cost-efficient 
method in terms of time-consuming, while GMM can confirm the admixture individu-
als' leaf shape. These various methods provide high classification accuracy, highlight 
the application in plant classification research, and are ready to be applied to other 
morphology analysis.
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sorting (Darwin, 1872; Rieseberg et al., 2006). Fortunately, recent 
advances in discrimination technology have provided opportunities 
to understand leaf shape variations. However, a detailed comparison 
of the accuracy and efficiency of this species identification method 
is lacking.

Traditional morphological methods of leaf shape measurement 
of quantitative and qualitative variables such as distances, angles, 
areas, and number of veins can be effectively for species iden-
tification (Henderson, 2006; Kremer et al., 2002; Marcus, 1990). 
However, such variables often do not share common units and 
comparable ranges of variation, and identification results are 
frequently affected by leaf size and are unlikely to intuitively ex-
press leaf shape variation in an interpretable figure (Mitteroecker 
& Gunz,  2009). To solve this problem, geometric morphometric 
method (GMM) digitizes the original geometry of the leaf shape 
based on the Cartesian coordinates of landmarks and gener-
ates quantitative descriptions of leaf shape (Klingenberg,  2011; 
Ray,  1992; Zelditch et  al.,  2004). The multivariate statistics of 
GMM can visualize leaf shape variation by translation, scaling, 
and rotation, regardless of the leaf location, direction, and size, 
making the results more intuitive and efficient (Mitteroecker & 
Gunz, 2009; Viscosi & Cardini, 2011). In particular, there is doc-
umentary evidence of generating quantitative descriptions of 
leaf shape, and these have been found to be quite effective for 
comparing shapes within and among species (Du et  al.,  2022; Li 
et  al.,  2021; Liu et  al.,  2018; Viscosi et  al.,  2009). However, the 
above method assumes some known shape attributes or land-
marks and might miss small interactive effect (Fu et al., 2017).

Modern molecular techniques provide another method for spe-
cies identification by classifying individuals in pure or mixed gen-
otypes without priori information (Guichoux et al., 2011; Pritchard 
et al., 2000). Microsatellite analysis has frequently been used to as-
sess the frequency of alleles between species under the assumption 
that species taxonomy is unknown (Agarwal et al., 2008; Guichoux 
et al., 2011). In particular, when using morphological characteristics 
for species classification, a priori grouping using microsatellite mo-
lecular approaches could provide a more reliable identification of 
species.

With the rapid development of machine learning, image-based 
deep learning methods have been increasingly applied in the field 
of plant recognition using machine self-learning to identify key 
features from massive image data (Hinton & Salakhutdinov, 2006; 
Pawara et al., 2017; Sun et al., 2017). The wide application of deep 
learning is based on the rapid development of multilayered neu-
ral networks with three main parts: an input layer, a hidden layer 
(the processing core), and an output layer, which provides a tool-
box for high-dimensional data (Olden et al., 2008). Convolutional 
neural network (CNN) was introduced by LeCun et al. (1989) as a 
supervised feedforward neural network algorithm. Owing to its 
ease of training and generalization, CNN has become a common 
neural network for image processing (LeCun et  al.,  2015). CNN 
has been widely used in various fields, including target detection 

(He et al., 2015), and speech recognition (Hinton et al., 2012), and 
made remarkable contributions to the application of image clas-
sification (Liu et  al.,  2019). In 2014, GoogLeNet (Inception V1) 
won the championship at ImageNet large-scale visual recognition 
challenge (ILSVRC), later refined as Inception V2 and Inception 
V3 (Ioffe & Szegedy,  2015; Szegedy, Liu, et  al.,  2015; Szegedy, 
Vanhoucke, et  al.,  2015). The Xception is an improved version 
underlying the Inception architecture, standing for “Extreme 
Inception” (Chollet,  2017). The Xception architecture is a linear 
stack of deeply separable convolutional layers with residual con-
nections. A depth-wise separable convolution can be understood 
as an inception module with a maximally large number of towers. 
It is a novel deep convolutional neural network architecture in-
spired by inception that performs well on the ImageNet dataset 
(Chollet,  2017). Experimental evaluation of the Xception model 
found that the top-5 accuracy of the Xception for classification on 
the ImageNet database was 94.5% (Chollet, 2017). Compared with 
previous traditional machine learning algorithms, image acquisi-
tion can quickly convert plant morphological information into ab-
stract feature maps by deep learning without human supervision, 
greatly simplifying the process of plant phenotypic data acquisi-
tion (Christin et al., 2019).

Quercus L. (oaks) is one of the most diverse and ecologically 
important tree genera in Northern Hemisphere, with high species 
diversity in North America and South-East Asia (Denk et al., 2018). 
High frequency of natural hybridization and introgression con-
found the interspecific boundary, making oak species identifica-
tion extremely complex (Darwin, 1872; Gerber et al., 2014; Manos 
et  al.,  1999; Rieseberg et  al.,  2006). In addition, wide geographic 
distribution and a variety of environmental conditions strongly influ-
ence leaf variation, making morphological characteristics alone weak 
for distinguishing oak species (Maya-García et al., 2020; Nagamitsu 
et al., 2020). Therefore, oaks are considered to be classic models for 
species identification (Viscosi et al., 2011).

In this study, we selected two closely related Asian white oak 
species, Quercus aliena Blume and Quercus dentata Thunberg, 
which belong to a small monophyletic group of oak species (Hipp 
et  al.,  2020; Hubert et  al.,  2014). Q. aliena and Q. dentata are 
the main forest tree species making up the mountainous vege-
tation areas of East Asia. They have a wide geographic distribu-
tion, mainly distributed on sunny slopes with an altitude range 
of 100–2000 meters and often co-occur side by side in some 
forests (Huang et  al.,  1999). Previous studies showed that both 
species can be discriminated by leaf shape (Du et  al.,  2022; Liu 
et al., 2018). However, a single method is not sufficient to iden-
tify species. Combining the evidence of morphological, molecular, 
and deep learning can effectively improve the classification of in-
dividuals and result in a higher resolution of species delimitation 
(Beatty et al., 2016; Rellstab et al., 2016). In this study, we system-
atically sampled individual trees of Q. aliena and Q. dentata dis-
tributed in China and used GMM and deep learning to answer the 
following questions: (1) Can the two related species be identified 
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through GMM and deep learning based on a priori identification 
by genetics? (2) What is the accuracy and efficiency of the above 
approaches for species identification? (3) Their potential applica-
tion in other morphology analysis.

2  |  MATERIAL S AND METHODS

2.1  |  Genotypic and morphological data

As ecological character displacement (ECD) might occur in its sym-
patric distribution we deliberately excluded the co-occurring sites in 
this study because the discrimination rate in sympatry is higher than 
92% by morphology assignment for the species pair (Du et al., 2022). 
In short, we conducted a random sampling of 538 individuals from 
39 natural oak populations spaced over 30 km apart, including 16 
Q. aliena populations and 23 Q. dentata populations, covering nearly 
the entire distribution in China (Figure S1, Table S1). For each popu-
lation, we collected three to six fully developed and mature leaves 
from each individual along the four cardinal directions in the middle 
layer of the canopy, at least 10 m apart. Genotypic data of the 538 
individuals using 12 nuclear microsatellite loci and four fluorescent 
dyes were from Du et al. (2022). Loci with non-overlapping allele size 
ranges were labeled with the same fluorescent dye, whereas those 
with overlapping allele size ranges were labeled with different dyes 
and resolved individually because of the different characteristic 
emission spectra of each dye. Morphological data of 2328 leaves with 
13 landmarks were from Du et al. (2022) (Figure 1, Table S3). These 
landmarks were converted to 13 pairs of Cartesian coordinates (x, 
y) as raw input data for morphological analysis (Klingenberg, 2011).

2.2  |  Model-based clustering using genetic data

We employed Bayesian cluster analysis to assign individuals to 
K clusters without any species identification information using 
Structure v. 2.3.4 (Pritchard et al., 2000). The program was imple-
mented in 200,000 Markov Chain Monte Carlo cycles (MCMC), fol-
lowing 100,000 burn-in cycles. We performed 20 iterations for each 
K value ranging from 1 to 10. To determine the most likely number 
of clusters, we used Pr(X|K) and ΔK implemented in the Structure 
Harvester program (Earl & VonHoldt, 2012; Evanno et al., 2005). We 
then used an admixture coefficient (Q) value to define whether the 
sampled individuals were purebreds or admixtures with a threshold 
value of 0.9, based on previous work in oaks (Lepais et al., 2009; Liu 
et al., 2018; Peñaloza-Ramírez et al., 2010; Viscosi et al., 2012). This 
dataset served as a priori classification for Q. aliena and Q. dentata. 
In addition, we performed a principal coordinate analysis (PCoA) 
based on the genetic distance matrix using GenAlEx v. 6.5 (Peakall 
& Smouse, 2012) and displayed the distribution frequency of prin-
cipal component (PC) scores for all individuals to visualize the indi-
viduals' genetic proximities using the “vegan” package in R (Oksanen 
et al., 2022).

2.3  |  Multivariate analyses of leaf morphology

We first performed a generalized procrustes analysis (GPA) to mini-
mize the difference between the corresponding landmarks by trans-
lation, scaling, and rotation using the MorphoJ program (Figure  1) 
(Klingenberg, 2011; Rohlf & Slice,  1990). Five outliers that signifi-
cantly deviated from the average configuration were excluded as 
default setting. We created a wireframe, and sets of lines linking 
the landmarks in a configuration, that can be used to visualize shape 
changes. Finally, we generated a covariance matrix of the average 
configuration at the leaf-level for the leaf shape variation analysis 
(Viscosi et al., 2009).

To visualize the differences in leaf shape between species, we 
conducted two distinct multivariate statistical analyses using the 
MorphoJ program, utilizing the genetic delimitation of Q. aliena and Q. 
dentata individuals as grouping variables for species discrimination. 
The first analysis employed canonical variate analysis (CVA), while 
the second employed discriminant analysis (DA) (Klingenberg, 2011). 
These two methods aim to combine the original variables into inde-
pendent composite variables that explain the largest part of the total 
variation in leaf shape. CVA maximizes the separation of specified 
groups based on Procrustes and Mahalanobis distances with per-
mutation tests (T2 statistics; 10,000 permutations per test) to inves-
tigate three or more groups. DA mainly focuses on the difference 
between two groups through cross-validation scores classification 
with T2 statistics (p value for tests with 1000 permutations <.0001; 
Klingenberg, 2011).

2.4  |  Deep learning discrimination based on image 
recognition

We used a total of 2221 scanning images for deep learning classifica-
tion comprising 539 Q. aliena images, 1202 Q. dentata images, and 
480 admixture images determined through genotyping (Figure 1). To 
achieve clear classification, we manually divided all images into the 
following four data sets: Q. aliena (539 images) vs. Q. dentata (1202 
images), Q. aliena (539 images) vs. admixture (480 images), Q. den-
tata (1202 images) vs. admixture (480 images), and Q. aliena (539 
images) vs. Q. dentata (1202 images) vs. admixture (480 images). 
We randomly divided each data set into three subsets for training, 
validation, and testing in the proportion of 70: 15: 15. We then used 
the Xception architecture with 36 convolutional layers to form the 
feature extraction base of the network. A rectified linear unit was 
used as the activation function (Figure  2) (Nair & Hinton,  2010). 
We selected SoftMax function as the classifier. The training, veri-
fication, and testing data sets were implemented on NVIDIA Tesla 
K80 GPUs using the TensorFlow 2.0 framework (Abadi et al., 2016). 
We visualized testing data using t-distributed Stochastic Neighbor 
Embedding (t-SNE) tools by giving each datapoint a location on a 
two-dimensional map (Van der Maaten & Hinton, 2008).

Optimal model parameters (convolutional kernel and batch nor-
malization) were selected using the training data and applied to the 
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test data set for estimating prediction performance. Different indi-
cators are obtained to evaluate the classification results. The clas-
sification accuracy rate (predicted value/true value) was calculated 
as follows:

Here, the true positive rate (TP) indicates accurate positive iden-
tifications are correctly predicted, and true negative rate (TN) indi-
cates accurate negative identifications are correctly predicted. False 
negative rate (FN) indicates that a true observation is predicted to 
be different. False positive rate (FP) indicates that the observation is 
different but predicted as true. Additionally, it is important to con-
sider more detailed parameters:

Accuracy =
TP + TN

TP + TN + FP + FN

F I G U R E  1 Strategy for leaf shape 
identification by geometric morphometric 
method (GMM) and deep learning with 
the genetic analysis served as a priori 
classification.
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    |  5 of 12QI et al.

A high recall indicates that the species is correctly recognized (a 
small number of FN). A high Precision indicates that an example labeled 
as positive is indeed positive (a small number of FP). Although there is 
no necessary correlation between precision and recall based on the 
calculation formula, they are often interdependent in large-scale data 
sets. Therefore, it is necessary to consider both parameters equally. 
The F-score, calculated as the harmonic mean of precision and recall, 
provides a comprehensive measure (Narkhede, 2018):

2.5  |  Effectiveness measurement of 
different methods

We compared and quantified the efficiency of different approaches 
for species identification using a time-effectiveness and cost-
effectiveness metric by converting the cost of experimental con-
sumables and labor. Taking a sample size of 1000 as an example: 
for genotyping, we required five plant genomic DNA extraction kits 
(Tiangen, Beijing, China) at a cost of 1000 RMB each. The estimated 
cost for PCR, including reagents (PCR kit, unlabeled primers, labeled 
primers, and labeled size standard) and consumables, was 5 RMB 
per reaction, with a requirement of 120 reactions. The total cost of 
capillary electrophoresis detection is 10,000 yuan. Thus, the total 
cost of the experimental consumables amounted to 17,146 RMB. 
For salary cost, the researchers involved in this experiment were 50 
RMB/h. The total time required for DNA extraction and PCR am-
plification of 1000 samples was 400 h, resulting in a cost of 21,500 
RMB. Consequently, the total cost of species identification by nSSR 
was 37,046 RMB, which is similar to the pseudo-multiplexing SSR 
genotyping cost reported by Guichoux et al. (2011) despite in differ-
ence in the salary cost in different countries.

For geometric morphology, five leaves were scanned for each 
individual, for 10 min. Each leaf was marked with 13 landmarks and 
exported data, this process required 8 min for each individual (five 
leaves). Researchers involved in this process, without the need for 
a scientific background, were paid 50 RMB/h for their labor. The 
total time required for leaf scanning and marking 1000 samples was 
300 h. Consequently, the total cost of species identification based 
on geometric morphology is 15,000 RMB.

For deep learning, it takes 1 min to arrange leaf pictures ran-
domly, rename them, and clearly label the classification for each 
image. Researchers involved in this progress, which required back-
ground knowledge in artificial intelligence, were paid 100 RMB/h for 
their labor. Thus, the total cost amounted to 8333 RMB based on the 
calculation of (1/60) × 5 × 1000 × 100.

3  |  RESULTS

3.1  |  Genotyping assignment

Using the Bayesian clustering method implemented in Structure, we 
found that Delta K and LnP (K) statistics strongly suggested presence 
of two major clusters in the dataset (Figure 3a, Figure S2). Based on 
a threshold value Q of 0.9, we assigned 248 individuals to pure Q. 
dentata (Q ≤ 0.1), 132 individuals to pure Q. aliena (Q ≥ 0.9), and 158 
individuals to the admixture (0.1 < Q < 0.9) (Figure  3a). In addition, 
PCoA results based on the genetic distance matrix at the individual 
level showed significant genetic differentiation between Q. aliena 
and Q. dentata with admixture intermingled, largely concordant with 
the Structure analysis (Figure 3b). In this study, genetic data were 
used as a priori for both leaf morphology analysis and deep learning 
identification.

3.2  |  Leaf morphological variation

The CVA score plots revealed significant morphological differences 
between Q. aliena and Q. dentata. Mixed individuals were scattered 

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F − score =
2∗Precision∗Recall

Precision + Recall

F I G U R E  2 The schema of Xception model with 36 convolutional layers.
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between the two species, closer to the Q. dentata cluster (Figure 4a). 
The transformation grids showed that the main differences between 
Q. aliena and Q. dentata was in the patterns of expansion and con-
traction from the base to the apex of the leaf (Figure 4a). Q. dentata 
leaves exhibited shorter petiole (distance between LM1 and LM2), 
wider blade tip (distance between LM5 and LM10), deeper lobes 
(distance between LM7 and LM12), and relatively narrower basal re-
gion (distance between LM8 and LM13) than Q. aliena leaves along 
the CV1 axis (Figure 4a).

The DA results also revealed significant morphological differ-
ences between Q. aliena and Q. dentata, largely concordant with the 
CVA results (Figure 4b, Table 1, T2 = 2432; p < .0001). DA achieved 
a high discriminant rate of 98.3% between Q. aliena and Q. dentata 

(Figure 4b, Table 1). Furthermore, in pairwise comparisons, 99% and 
98% of Q. aliena and Q. dentata (Figure 4b), 89% and 71% of Q. aliena 
and admixture (Figure 4c), and 86% and 57% of Q. dentata and ad-
mixture (Figure 4d) were correctly identified, respectively.

3.3  |  Accuracy of deep learning discrimination

We trained and evaluated four data sets for Q. aliena, Q. dentata, and 
admixture based on the Xception architecture. The test accuracy ex-
hibited rapid improvement from the initial epoch, stabilizing after 
20 epochs for the data sets of Q. aliena vs. Q. dentata and Q. aliena 
vs. Q. dentata vs. admixture (Figure S3a,d). Extracting features from 

F I G U R E  4 Leaf geometric 
morphometric analysis. (a) Scatter plot 
of the canonical variate analysis (CVA) 
at individual level with 90% confidence 
ellipses. Transformation grids represent 
the extreme leaf shape of Quercus 
aliena, Quercus dentata, and admixture. 
Discriminant analysis (DA) for the leaf 
shape differentiation of (b) Quercus aliena 
vs. Quercus dentata, (c) Quercus aliena vs. 
admixture, and (d) Quercus dentata vs. 
admixture.

F I G U R E  3 Genetic assignment and 
differentiation between Quercus aliena 
and Quercus dentata. (a) Structure analysis 
for K = 2 with different populations 
separated by black lines. (b) Principal 
component analysis (PCoA) for Quercus 
aliena, Quercus dentata, and admixture, 
with the distribution frequency of the PC1 
and PC2 values plotted on the top and 
right sides of the scatter plot. Percentage 
of total variance explained by each axis is 
noted in brackets.
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    |  7 of 12QI et al.

the leaf images revealed strong aggregation characteristics within 
images of the same species, enabling accurate species identification 
for the Q. aliena and Q. dentata data sets (Figure 5). The Xception 
architecture trained on images of Q. aliena and Q. dentata performed 
well, with an accuracy rate of 95.8% and an F-score of 0.9 (Table 2). 
However, the results showed that the recognition accuracy was the 
lowest for the data set of Q. dentata, Q. aliena, and admixture (ac-
curacy: 44.5%, F-score: 0.3). The discrimination between Q. aliena 
and the admixture exhibited a higher accuracy rate than Q. dentata 
and the admixture, suggesting that the admixture displayed greater 
morphological similarity to Q. dentata (accuracy: 71.8% vs. 67.9%, 
Table 1).

3.4  |  Cost comparison of species identification

A cost analysis comparing the three different methods for species 
identification revealed that as the number of sampled individuals in-
creased, the total time and cost of nSSR exceeded those of geomet-
ric morphology and deep learning methods (Figure 6a,b).

4  |  DISCUSSION

In this study, we conducted a comparative analysis to evaluate the 
accuracy and efficiency of the geometric morphology and deep 
learning methods in discriminating closely related oaks, using ge-
netics as a priori classification. Our analysis focused on leaf shape 
variation, which is related to the physiological characteristics of 
the species. Considering the intuitive shape of plant species, GMM 
allows leaf shape variation to be more visualized than traditional 
morphological measurements. In addition, we used deep learning, 
an artificial intelligence approach with the ability to process large 
and complex datasets, to discriminate oak species and highlight 
the role of the potential of artificial intelligence techniques in spe-
cies identification.

4.1  |  Species identification using genetic 
assignment as a priori

Inference regarding species identification based on genetic data 
alone is likely inadequate, and species identification should be 

conducted considering morphology (Carstens et al., 2013). There 
are two approaches to this integration. One is the morphologi-
cal differences serve as the basis for taxonomic hypotheses that 
are validated using genetic data (e.g., Gugerli et al., 2007; Welton 
et al., 2013). The other is interpreted as morphologic variation in 
the context of identification from genetic data as a robust meth-
odology to support the results of species identification (e.g., Liu 
et  al.,  2018; Stech et  al.,  2013). In our study, we used the latter 
approach for species identification of the two oaks using genetic 
analysis as a priori. Using the Bayesian approach, we successfully 
assigned over 90% of the samples to one of two distinct clusters 
corresponding to the previously described species, making it pos-
sible to estimate the genetic structure of each species and identify 
cases of introgression.

If no single morphological recognition trait exists in two re-
lated species, multivariate analyses are ideal tools to identify 
parameters that differentiate between groups of individuals 
(Rellstab et  al.,  2016). The results of CVA indicated that there 
was some variation in the leaf shape of Q. aliena and Q. dentata, 
with admixture individuals exhibiting intermediate leaf shapes. 
Notably, the difference in leaf shape between Q. aliena and Q. den-
tata was mainly concentrated in the leaf tip and base according 
to the transformation grid. When the admixture was influenced 
by both parent species, their leaf shape represented an average 
leaf shape of both, but the confidence ellipse overlap was larger 
and the leaf shape was more similar to that of Q. dentata. In DA 
comparisons, and 71% and 89% of the admixture and Q. aliena, 
57% and 86% of the admixture and Q. dentata trees were correctly 
classified, respectively, which was consistent with the CVA result 
that the shape of admixture individuals was close to Q. dentata. 
These morphological analyses revealed significant differences be-
tween species and highlighted those mixed genotypes (admixture 
individuals) are a mosaic of phenotypes with intermediate char-
acteristics of the parental species (Gugerli et  al.,  2007; Viscosi 
et al., 2009).

We also used deep learning, a convolutional neural network that 
automatically extracts image features without manual intervention, 
to extract the leaf features. This approach overcame the limitations 
of traditional plant leaf recognition that relied on manpower based on 
the Xception architecture with excellent classification accuracy and 
good generalization ability. Our deep learning analysis, used high-
resolution scanned leaf images with a uniformly white background, 
which was not a photograph taken in the habitat, minimizing errors 

Category
Proportion of 
discriminant (%)

Discriminant 
rate (%)

Procrustes 
distance T-square p-value

Q. aliena 98.8 98.3 0.12 2432.8 <.0001

Q. dentata 97.9

Q. aliena 89.4 79.3 0.07 243.9 <.0001

Admixture 70.5

Q. dentata 86.4 74.3 0.05 183.0 <.0001

Admixture 57.1

TA B L E  1 The discriminant rate of 
geometric morphometric method (GMM) 
on Q. aliena, Q. dentata, and admixture 
based on the data of cross-validation in 
discriminant analysis (DA).
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introduced by the machine learning algorithm. In the deep learning 
analysis, a higher mean discrimination was observed between Q. ali-
ena and Q. dentata with a higher detection index accuracy. When 
the admixture individuals were considered as a separate taxon and 
verified by three classifications, the accuracy index was 45%, consis-
tent with the GMM result indicating that admixture individuals could 
not be accurately identified because of their intermediate form. 
Interestingly, the resolution between admixture individuals and Q. 
dentata was lower, supporting the finding that the leaf shape of ad-
mixture individuals was more similar to that of Q. dentata, which is 

consistent with the results of CVA in GMM. These findings suggest 
that oaks retain high levels of fitness variation, with Q. aliena being 
more favored by the selection of leaf morphological traits.

4.2  |  Comprehensive comparison of different 
identification methods

When comprehensively comparing the different methods for 
plant species identification, it is sensible to consider the overall 

Group Precision Recall Accuracy (%) F-score

Q. aliena vs. Q. dentata 0.9 0.9 95.8 0.9

Q. aliena vs. Admixture 0.8 0.6 71.8 0.7

Q. dentata vs. Admixture 0.8 0.5 67.9 0.6

Q. aliena vs. Q. dentata vs. Admixture 0.3 0.3 44.5 0.3

TA B L E  2 Classifier performance for 
test different groups with Xception model.

F I G U R E  5 Last layer feature mapping obtained by t-distributed Stochastic Neighbor Embedding (t-SNE) for different classifications of 
(a) Quercus aliena vs. Quercus dentata, (b) Quercus aliena vs. admixture, (c) Quercus dentata vs. admixture and (d) Quercus aliena vs. Quercus 
dentata vs. admixture.
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classification accuracy of the results as well as the accuracy and ef-
ficiency of the resources. Using a variety of approaches, we found 
that each has its own advantages and limitations in plant species 
identification. We used the molecular level as the criterion to iden-
tify the two oak species and their admixture, and subsequently com-
bined GMM and deep learning methods to analyze the identification 
of Q. aliena, Q. dentata, and admixture. The identification results of 
nSSR provide a genetic basis. However, nSSRs require a large num-
ber of molecular experiments making it time-consuming and costly.

Plant morphological identification was implemented by qualita-
tive comparison to distinguish differences in leaf traits among spe-
cies, transforming species image information into data for statistical 
analysis. We acquired a large amount of leaf shape information from 
the images, simplifying the process of morphological data collec-
tion compared to traditional morphological measurements. GMM 
can digitize phenotypic characteristics based on manually extracted 
landmarks, providing reliable quantitative approaches to leaf shape 
variation (Viscosi et al., 2011). In particular, GMM has demonstrated 
its utility in studying shape variations and identifying developmen-
tal patterns across various landmarks in individuals, using tools 
such as MorphoJ and the R package shapes (Chitwood et al., 2016; 
Viscosi, 2015). However, GMM requires strong subjective judgment 
in the manual marking of the feature selection.

Deep learning has been successfully used to identify related spe-
cies, providing valuable insights for the identification of other spe-
cies (Işık et al., 2021). Deep learning eliminates the manual search 
for suitable characteristics by automatically learning relevant char-
acteristics, shortening the classification time, and improving the 

discrimination accuracy for this specific application. Compared with 
GMM, deep learning shows advantages in accuracy, as well as sig-
nificant advantages in terms of cost and time, and in large samples. 
However, deep learning method requires a large number of basic im-
ages to distinguish individuals with similar phenotypes. The results 
from GMM and deep learning indicated that leaf shape analysis can 
effectively distinguish the two species. Deep learning is particularly 
advantageous in inter-species identification, while GMM is better at 
identifying mixed individuals and pure individuals, as well as visualiz-
ing the shape difference. Deep learning showed a greater advantage 
in species identification because feature extraction in deep learning 
contains more than 13 landmarks in GMM. Feature extraction of 
leaves can be further enhanced to improve the accuracy of identi-
fication, and the overall leaf morphology can be clearly presented 
by enhancing the leaf vein characteristics based on the original data 
(Grinblat et al., 2016).

In this study, we achieved favorable identification results be-
tween two related species using deep learning. However, compli-
cated as oaks further verification is required to determine whether 
the deep learning model can be applied for their identification. The 
leaf shape was the only characteristic used in the classifiers in our 
study. Given the degree of leaf morphology similarity, and incorpo-
rating additional features such as flower, vein, or pollen microscopic 
imaging into the classifier, better performance of species identifica-
tion might be expected.
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