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Abstract 

Ecological adaptation or local adaptation is one of the most important responses of species to 

the changing environment. Understanding the molecular mechanism of local adaptation 

provides a theoretical foundation for protecting and utilizing the species. Landscape genomics 

studies the interaction between the genetic variation of species and landscape characteristics 

on the genomic level which quantifies the response of genetic variation caused by 

environmental changes at the genomic level, and can provide new insights for local adaptation 

research as compared with the classic population genetics methods. In this review, we first 

summarized a series of methods for local adaptation research, with particular emphasis on the 

introduction of generalized linear mixed models, multivariate statistical analysis, non-linear 

models, and calculation tools involved in genotype-environment associations (GEAs), and we 

also compared the advantages and disadvantages of these methods. Next, we introduced the 

newly developed method “risk of non-adaptedness (RONA)”, which evaluates the current and 

predicts future adaptability of species by combining the allele frequency and the changes in 

environmental factors. Finally, using case studies of tree-local adaptation, we provided 

suggestions for future study directions on tree-local adaptation. 

Keywords: Genetic variation, climate change, genotype-environment interaction, ecological 

adaptation 
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摘要 [Abstract in Korean] 

생태적 적응 또는 지역 적응은 변화하는 환경에 대한 종의 가장 중요한 반응 중 하나이며, 지역 

적응의 분자 메커니즘을 이해하면 종의 보호 및 이용을 위한 이론적 토대를 제공한다. 경관 

유전체학은 종의 유전적 변이와 경관 특성 간의 상호작용을 유전체 수준에서 연구하여 환경 

변화에 따른 유전적 변이의 반응을 유전체 수준에서 정량화하고, 고전적인 개체군[집단] 유전학 

방법과 비교하여 지역 적응 연구에 대한 새로운 통찰력을 제공할 수 있다. 이 리뷰에서 저자들은 

먼저 일반 선형 혼합 모델, 다변량 통계 분석, 비선형 모델 및 유전자형-환경 연관성(genotype-

environment associations, GEAs)에 관련된 계산 도구의 도입에 중점을 두고 지역 적응 연구를 

위한 일련의 방법을 요약했고 이러한 방법의 장점과 단점을 비교하였다. 다음으로 대립유전자 

빈도와 환경적 요인의 변화를 조합하여 종의 현재를 평가하고 미래의 적응성을 예측하는 신개발 

방법인 “비적응 위험도(the risk of non-adaptedness, RONA)”를 소개한다. 마지막으로 수목의 

국지적응 사례연구를 통해 수목국지적응에 대한 향후 연구방향에 대한 제언을 하였다. 

핵심어: 유전적 변이, 기후 변화, 유전자형-환경 상호작용, 생태적 적응 

 

Introduction 

Climate change is a major factor leading to global biodiversity loss [1,2]. In general, species 

lacking phenotypic plasticity can adapt to changing environments by dispersing to other 

suitable habitats [3,4], and can also be retained in the original habitats through adaptive 

evolution caused by gene flow or standing genetic variation [5,6]. However, for most plants, 

when the rate of climate change is faster than the rate of plant adaptation, it is difficult for 

plants to adapt to the rapidly changing climate through migration or dispersal [5,7-10]. Instead, 

plants will respond to climate change primarily through their standing genetic variation [6,11]. 

From a researcher’s perspective, there may be some shortcomings when using a single method 

to disentangle different biotic and/or abiotic factors related to ecological adaptation. Thus, it is 

necessary to use several state-of-the-art methods to reveal and predict the ability of plants to 

adapt to novel environments, and thus to help people better understand how plants adapt to a 

rapidly changing climate [12,13]. 

The classic method for detecting the genetic basis of ecological adaptation relies on 

population genetics [14]. This approach attempts to compare the genetic differentiation 

between populations (FST, the average inbreeding coefficient between populations within a 

species) and identify the genetic differentiation-specific loci that are obviously different from 

neutral evolution. These outlier loci are most likely to be affected by natural selection [15,16]. 

However, this method heavily depends on a large number of samples and does not consider 
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environmental heterogeneity, and would produce false positives [17,18]. The newly developed 

landscape genomics method focuses on genotype-environment associations (GEAs) to reveal 

the molecular mechanism of ecological adaptation [2,19,20]. Landscape genomics can uncover 

the interaction between species’ adaptive genetic variation and landscape characteristics at the 

genome level by integrating genetic variation and biological spatial models [21,22]. The 

applications of generalized linear mixed models [23,24], multivariate statistical analysis 

[25,26], and nonlinear models [27,28] involved in the field of landscape genomics can deeply 

identify the loci or functional genes associated with environmental factors with higher accuracy 

than population genetics studies. However, population genetics potentially provides multiple 

benefits for researchers to understand the genetic distribution pattern and demographic history 

of a given species. Therefore, combining the principles and methods of population genetics and 

landscape genomics can deepen our understanding of the molecular mechanisms of species’ 

ecological adaptation and infer the species’ adaptive ability under climate change scenarios 

[20,29]. In this review, we first summarize the identification methods of ecological adaptation 

based on the outlier tests, generalized linear mixed models, multivariate statistical analysis, and 

nonlinear models, and then construct the general technical process (Figure 1) by comparing 

their advantages and disadvantages (Table 1). Secondly, we introduce the newly developed 

method of “risk of non-adaptedness (RONA)”. This method combines allele frequency and 

environmental factors to evaluate the species’ response to the current environment and further 

predict its adaptability to the future environment, providing insights into estimating the 

adaptative potential of species to future environmental gradients. Finally, we depict some 

recent research cases of tree ecological adaptation and then provide some suggestions and/or 

proposals for future studies on tree ecological adaptation. 

1 Method for the detection of ecological adaptation  

1.1 Detection of specific loci based on genetic differentiation 

The classical approach to uncovering molecular imprints consistent with adaptive evolution is 

based on FST-specific loci analysis, aiming to find genetic differentiation-specific loci beyond 

the expectations of neutral selection [15,16,30]. A large number of methods for detecting 

ecological adaptation based on FST-specific loci have been developed [31,32]. This review 

introduces the two most widely used outlier tests for detecting adaptive signatures [31,33] 

(Figure 1, Table 1). 
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One class of methods utilizes the differences in allele frequencies between populations 

to identify genetic loci subject to natural selection from genetic data. The theoretical basis of 

this method is that loci subject to directional selection (adaptive selection or positive selection) 

show higher genetic differentiation than neutral loci, while loci subjected to balancing selection 

(purifying selection or negative selection) show lower genetic differentiation than neutral loci 

[31]. This method considers the effective population size and migration rate and can effectively 

reduce the false positive rate. At first, the FST at genetic loci is calculated, then prior odds are 

set for the neutral model and the distribution of the posterior odds (PO) is calculated. The loci 

that differed significantly from the FST expected by the neutral theory are identified as the FST-

outliers. However, special attention should be paid to the selection of PO value when applying 

this method. For data with many genetic loci, setting a lower PO value will lead to false 

positives, while setting a higher PO value will lead to false negatives. Meanwhile, it should be 

noted that if the genetic differentiation loci are located on the candidate genes, the number of 

outliers may be greater than the number of randomly selected loci [34,35]. BayeScan is one of 

the most representative programs applying the aforementioned principles. It detects specific 

loci by directly calculating the PO value of each locus [31]. When conducting BayeScan 

analysis, the users need to convert genetic data into GESTE/BayeScan format and then set the 

input, output, and iteration numbers. Before the final analysis, a trial run is required to estimate 

the mean and variance of the parameters during model simulation. Usually, the number of trial 

runs (pilot runs) is set to 20, and the length of the trial run (pilot runs) run is 5,000. Finally, the 

genetic loci whose PO values are greater than the set threshold are defined as FST-outliers. 

Another type of method fits the population dynamics of species to a null hypothesis 

distribution model, and then compares the genetic differentiation under the model with the 

actual genetic differentiation, and tests its significance. This method considers the influence of 

heterozygosity on genetic differentiation and sets different thresholds for different 

heterozygosities to identify specific genetic differentiation loci [33]. The algorithm can be 

implemented by Fdist2 software. First, an island model is assumed to simulate the historical 

dynamics of the population and subsequently compared them with real genetic differentiation 

loci. Then, the real heterozygosity and FST of each locus were deduced based on the simulated 

heterozygosity and estimated genetic differentiation. The results may be very sensitive to the 

historical dynamics of specific populations, so the false positives may be higher than BayeScan 

[15]. 
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Figure 1 Overview of strategies used for local adaptation analysis. The software and R package used for 

analysis are shown in italics in red. The detailed information is listed in Table 1. 
 

 

 

 

 
Table 1 Overview of methods and software available for genetic differentiation and environmental 

association analysis. 

 Method 
Association 

type 

Individual 

/population 
Software or R package Ref. 

Genetic 

differentiation-

specific locus 

detection 

Bayesian 
Markov Chain 

Monte Carlo 

Individual Fdist2 [31] 

Individual BayeScan 2.1 [33] 

Bayesian 

mixture model 
Linear 

Individual and 

population 
Bayenv 2.0 [23] 

Generalized 

linear mixed 

model 

Mixed linear 

model 
Linear 

Individual and 

population 
“LEA” R package [24] 

Multiple 

logistic 

regression 

Linear Individual SAM Matlab® 
[37, 

38] 

Multivariate 

statistical 

analysis 

Linear 

regression 
Linear Individual 

“geosphere, ecodist” R 

package 

[41, 

47] 

Multiple 

regression 

lines 

Linear Individual “vegan” R package [48] 
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Nonlinear 

model 

Nonparametric 

machine 

learning 

regression line 

Non-linear Individual 
“gradient forest, extended 

forest” R package 
[27] 

Permutation 

matrix 

regression 

Non-linear Population “gdm” R package [28] 

 

1.2 Generalized linear mixed model 

Outlier tests based on identification of regions of high genetic differentiation among 

populations as compared to a neutral model usually require large samples from different 

populations [17], while they do not consider environmental heterogeneity. The detection of 

GEAs can rely on generalized linear mixed models, which can reveal the adaptive genetic 

pattern of species by identifying genetic variations associated with environmental gradients 

[36]. These methods consider the environmental heterogeneity between populations and have 

advantages over the outlier tests mentioned above. Researchers have developed a series of 

methods to identify putatively adaptive loci by association analysis between allele frequency 

and environmental factors. In this review, the most widely used Bayesian mixed model [23], 

latent factor mixed model [24], and spatial analysis algorithm [37, 38] are taken as examples 

(Figure 1, Table 1). 

The Bayesian mixture model is an empirical model for estimating the covariance of 

allele frequencies between populations and then uses the model as a null hypothesis for testing 

genetic loci. The biggest feature of this method is that it establishes a null hypothesis model as 

a reference via neutral genetic markers, excluding the interference of historical population 

dynamics [23]. This analysis can be applied by the BayEnv software. Firstly, the covariance 

matrix of allelic frequencies and environmental variables of populations are established based 

on neutral genetic loci as the prior distribution model of a null hypothesis. Based on this model, 

the users then can calculate the posterior distribution P value of the correlation between the 

allele frequency of each locus and each environmental variable. The correlation strength is 

identified by the Bayes factor [23]. This method is very effective for detecting loci with 

congruent responses to the environments among populations, but when analyzing whether loci 

are affected by differential local adaptation, a separate regional and/or time slice analysis is 

required [39]. However, this method has some drawbacks, for instance, it assesses correlations 
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between a large number of single nucleotide polymorphisms (SNPs) and climate variables at 

a time without taking complex spatial structure into account and might lead to high false 

positives [40]. 

The mixed linear model method is based on the Bayesian Markov chain Monte Carlo 

(MCMC) algorithm [24], which can analyze the association between predictor variables and 

allele frequencies. This method takes latent factors (such as population structure) into account, 

it can avoid the interference of model confounding effects caused by demography and 

geographical isolation (isolation by distance, IBD) [41], and has low false positives [24]. The 

mixed linear model first uses Bayesian estimated regression coefficients to generate data 

showing associations between population structure and environmental variables to correct for 

confounding effects. Then the specific loci associated with environmental variables can be 

identified as the signal of natural selection [24]. The latent factor mixed models (LFMM) 

analysis can execute the above process. The LFMM analysis first uses the R package LEA 

[42,43] to convert the genetic data to LFMM format, and the missing data is inputted by using 

the sparse nonnegative matrix factorization (SNMF) function. Then, the users can set run 

length parameters (i.e., iterations, burn-in). The simulated results are sensitive to the run length 

parameters when the data set is relatively small (hundreds of individuals, thousands of loci). 

In this case, the run length parameters can be increased appropriately [43]. Finally, researchers 

can set the latent factor (i.e., population structure) and run ten independent calculations by 

simulating the correlation between the allele frequencies and environmental variables. The 

correlation between the allele frequencies and environmental variables is evaluated according 

to the significance level (P) of the hypothesis test. A key benefit of this method is that it can 

simultaneously evaluate the impacts of neutral population structure and the environmental 

effects on allele frequencies without having to define a structure or determine putatively 

neutral loci in advance [39]. 

Spatial analysis method (SAM) is a method based on spatial analysis combined with 

geographic information systems (GIS), environmental variables, and molecular data to detect 

the characteristics of natural selection [37,38]. This method can not only identify loci 

underlying genetic differentiation but also consider ecological factors. It first constructs a 

matrix based on genetic loci and corresponding environmental parameters at sampling sites. 

Then multiple univariate logistic regression is used to detect the association between the allele 

frequencies and environmental variables. This method can be run by the SAM program 

developed by Matlab® based on the generalized linear model fitting (GLMfit) [44] function. 
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The likelihood equation was deduced by entering the number of models to be calculated (i.e., 

the number of genetic loci and environmental variables). Then, the maximum likelihood 

estimates for the parameters were determined and the results could be displayed by setting a 

dynamic table in Excel [37]. However, as this method ignores the population structure, if the 

studied species has a complex demographic history, it may produce high false positives 

[24,45]. The recently developed modular SAMβADA well overcomes the above drawbacks 

that exist in the initial SAM program and can implement the multivariate analysis. The neutral 

population structure can be defined as an additional factor when evaluating the correlation 

between allele frequencies and environmental variables in the SAMβADA [46]. In addition, 

the SAMβADA can quantify the level of spatial autocorrelation of genotypes and can be run 

on different processors in parallel. 

1.3 Multivariate statistical analysis 

Multivariate statistical analysis usually combines the environmental gradient and the spatial 

genetic structure to test the multivariate relationship between them. The most representative 

methods include the Mantel test (i.e., geographical/environmental isolation analysis) [41,47] 

and redundancy analyses (RDA) [48] (Figure 1, Table 1). 

IBD [41] and isolation by environment (IBE) [47] are the most commonly used 

methods to evaluate the relationship between geographic/environmental distance and 

population genetic differentiation (e.g., FST). The correlation between the matrices of genetic 

differentiation and the geographical/environmental distance is achieved by Pearson correlation 

coefficients [49,50]. However, this method should be restricted to the cases in which data can 

only be expressed as pairwise distances in the taxa. Compared with other alternative methods 

(i.e., partial Mantel test, multiple matrix regression with randomization (MMRR), and partial 

RDA), its statistical power is not high, and there are certain false positives [51]. 

In the IBD/IBE test, to regress the FST and the pairwise linear geographical/ 

environmental distance with the shortest distance, FST/(1−FST) can be calculated by linear 

transformation [52,53]. According to the latitude and longitude of the sampling sites, the R 

packages geosphere [54] and ecodist [55] are used to calculate the matrices of geographic 

distance and environmental distance between sampling sites, respectively. Finally, the 

IBD/IBE test was performed to detect the correlation between geographical distance, FST 

between populations, and climate differences, respectively [56-58]. It should be noted that 

when analyzing geographical/environmental isolation, environmental/geographical distance 



Wang, Feng, & Du                                                                   9 

 

should be controlled and the partial Mantel test [59] and/or multiple regression on distance 

matrices (MRM) [60] are also needed to execute simultaneously. 

The IBD/IBE test (e.g., the Mantel test) can only detect the impacts of a generalized 

geographical/environmental matrix on genetic differentiation (e.g., FST) rather than identify 

the association between FST and the distance matrices, from specific environmental conditions 

such as precipitation, temperature, and soil. Redundancy analysis (RDA) overcomes the above 

shortcomings. RDA is a method of constrained permutation [48] and is a multivariate 

constrained ordination method that integrates principal component analysis and multiple 

regression analysis [48]. RDA can profile the distribution of genetic variation on a specific 

environmental gradient by integrating genetic data with environmental factors for multivariate 

modeling [22,25,61] with low false positives [53]. RDA can be calculated using the ‘rda’ 

function [62] in the R package vegan. The allele frequency of each individual at each locus 

treated as a response variable in RDA can be transformed by the R package LEA [43], and the 

environmental data is treated as explanatory variables. To avoid the influence of geographical 

(latitude and longitude) variables when analyzing climate variables, partial RDA (pRDA) is 

required. Finally, the climate and genetic data are performed by permutation tests to evaluate 

the significance levels. Since natural selection usually involves a polygenic process driven by 

multiple environmental variables, therefore, compared with traditional univariate analysis, 

multivariate analysis has greater advantages in detecting the ecological adaptation process of 

species [63]. Similar multivariate statistical analysis methods include distance-based 

redundancy analysis (dbRDA) [64] and canonical correspondence analysis (CCA) [65]. 

1.4 Nonlinear model 

The influence of environmental factors on genetic differentiation may not conform to the linear 

model in most cases. Therefore, using linear model-based methods to confirm the association 

between genetic variation and the environmental gradient might arise biased interpretations. 

In ecological analysis, researchers have mainly focused on species’ responses to environmental 

gradients and identified the most important environmental variables that can be used to predict 

biodiversity patterns. The most representative methods based on nonlinear regression include 

gradient forests (GF) [27] and generalized dissimilarity modeling (GDM) [28] (Figure 1, Table 

1). 

GF is a community-level extension of the nonparametric, machine-learning regression 

tree method known as random forests (RF). RF can improve prediction accuracy and identify 
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gradient abundance changes [66]. GF measures the role of predicted environmental variables 

by integrating univariate RF analysis and cross-validation of important values, which can 

directly simulate the compositional changes of genetic variation and explore the nonlinear 

associations of space, environment, and allelic frequencies. GF also provides a means to 

examine the response of individual locus to environmental gradient, although it will become 

computationally limited when using a large SNP-based dataset [67]. The R packages 

gradientForest and extendedForest [68,69] can be used to integrate the results of RF of 

multiple species to determine potential predictor variables and obtain the proportion of genetic 

variation explained by each predictor. The influence of different environmental variables on 

genetic variation can be evaluated by calculating the proportion of the corresponding predicted 

variables changing along the environmental gradient [27,70]. 

GDM is based on the dissimilarity between sampling sites to simulate the spatial 

variation of genetic differentiation and then explains the correlations among genetic variation, 

environment, and geographical distance using a nonlinear model. GDM is a nonlinear 

extension of permutational matrix regression that models pairwise biological dissimilarity 

between sites as a nonlinear function of pairwise site differences in environmental and 

geographic variables. It also utilizes I-spline and percent deviance to determine the 

compositional turnover of allele frequencies along environmental gradients and explains the 

degree of model fitting, respectively [28, 70]. The distance-based GDM can explain the spatial 

patterns of genetic variation caused by demographic processes (i.e., IBD or isolation by 

ecological resistance) and explore infinite genetic loci with arbitrary allelic frequencies [28]. 

GDM is suitable for the fitting analysis of loci with pairwise distance matrices (i.e., 

geographical and environmental distance matrices), which can be implemented by the R 

package gdm [71]. The advantages of the GF and GDM are to handle large-scale genomic data 

and provide insights into genomic regions ostensibly under local adaptation. In addition, 

compared with the other methods listed above, an especially powerful feature of GDM and GF 

is that they can be employed to evaluate the potential impacts of climate change on biodiversity 

at the genetic level and how these impacts vary spatially [19]. 

2 Analysis of the risk of non-adaptedness (RONA) 

In the context of climate change, it is crucial to determine the “fitness” (i.e., adaptive capacity) 

of species under future climate scenarios. Traditional ecological niche models (ENMs) 

integrate species’ occurrence data and bioclimatic variables to predict their potential 
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distributions under future climate changes. ENMs can delineate areas or populations that 

necessitate priority protection based on the prediction results, informing the protection of 

species and decision-making on conservation interventions [72,73]. However, ENMs assume 

the species ‘as a whole’ and ignore the local adaptation of species to specific biotic or abiotic 

factors, which often varies across populations (i.e., infraspecific variation) [74-76]. 

In order to overcome the deficiencies of ENMs, the risk of non-adaptedness (RONA), 

which relies on simple linear regression, was developed and represents the average change in 

allele frequency at climate-associated loci theoretically required to match future climate 

conditions [77] (Figure 1). This method utilizes the RONA values to access the possibility of 

the population persistence under future climate change. The higher the RONA value means 

the lower the potential of the population to adapt to future climate conditions and vice versa. 

Empirical studies have shown that if the expected allele frequency < 0.1 per decade might be 

able to match the projected climate change, whilst change greater than 0.1-0.2 per decade 

might result in high climate adaptation lags [78]. Compared with the traditional ENMs, the 

advantage of the RONA method is that it takes the species distributions and allelic frequency 

of species into account simultaneously. 

When performing RONA analysis, researchers can first download the climate data 

under different representative concentration pathways (RCP). The allele frequency of 

individuals and the assumed value (P-value) matrix of environmental factors can be retrieved 

from LFMM. RONA can be executed by PYRONA which ranks environmental factors by the 

number of associations between genetic loci (e.g., SNPs) and environmental factors [29]. 

Furthermore, the average RONA value calculated by PYRONA is weighted by the R2 value of 

each involved correlation, which can be interpreted as the adaptive potential of the population 

under future climate change. The recent study precisely defined the method of predicting the 

adaptive potential of species under the future environmental gradient as a future risk of non-

adaptedness (f-RONA) [79]. Furthermore, this approach argued that the current risks were 

likely to be particularly important for species that are already declining due to climate change. 

Based on this principle, the researchers explicitly defined the current risk of non-adaptedness 

(c-RONA) by further extending the initial RONA [79], which can evaluate the average change 

in allele frequency at climate-associated loci required for a given species to match the estimate 

of optimum under the current environmental gradients. 

3 Application of ecological adaptation research in forest ecology 
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With long generation times and large effective population sizes, trees often occupy highly 

heterogeneous environments, which are good model systems for ecological adaptation 

researches [40]. Early studies on tree ecological adaptation mainly focused on the method of 

population genetics [14,16]. Since 2010, landscape genomics has been widely used in the study 

of tree ecological adaptation, which provides a new avenue for revealing the mechanism of 

tree ecological adaptation [13,20]. For example, Rellstab et al. (2016) studied the local 

adaptation of three species of oak trees (Quercus petraea, Q. pubescens, and Q. robur) in 

Switzerland using pooled amplicon sequencing [77]. Environmental association analysis 

(EAA, also called GEAs) found that there were gene loci significantly associated with 

precipitation and clay content in the soil in the three species. Martins et al. (2018) studied the 

ecological adaptation of Q. rugosa at high altitudes in Mexico using genotyping by sequencing 

(GBS) [80]. They identified 5,354 SNPs from 103 individuals in 17 populations. EAA showed 

that 97 SNPs were significantly correlated with climate variables, especially seasonal 

precipitation, which provided preliminary details for future conservation and management 

strategies of this species. 

Species in nature can usually respond to multiple external environmental variables, so 

multivariate statistical analysis is widely used in the study of species’ genetic variation in 

response to the environments. Sork et al. (2016) identified 195 SNPs in 13 populations of 

Quercus lobata in California from 40 candidate genes related to bud/flowering, growth, and 

osmotic and temperature stress [26]. The association analysis between allele frequency and 

climate gradient further identified five SNPs involving genes related to budburst/flowering and 

temperature stress. RDA showed that climate variables explained 67% of the adaptive genetic 

variation, but only 33% of the neutral genetic variation. In addition, more studies have shown 

that there may not only be a simple linear correlation between the genetic variation of species 

and the environmental gradients but also a nonlinear correlation. Therefore, nonlinear models 

play important roles in analyzing the genetic variation of species. For example, Gugger et al. 

(2018) applied a nonlinear, multivariate environmental association method to examine the 

spatial genetic structure and its association with environmental variation in an ecologically and 

economically important tree species endemic to Hawaii, Acacia koa [70]. They identified more 

than 11,000 SNPs from 311 trees, GF and GDM both revealed strong correlations between 

spatial genetic structure and mean annual rainfall. Utilizing models for projected future climate 

on Hawaii Islands, they showed that the predicted changes in rainfall patterns may result in 

genetic offsets. 
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Researchers in China mostly use neutral markers (loci) to study the demographic 

history of trees, but few studies focus on the adaptive genetic variation of trees. In recent years, 

researchers have gradually begun to pay attention to the influences of environmental factors 

on the adaptive genetic variation of species. Xia et al. (2018) determined the influences of 

environment and geography on the population structure of Chinese pine (Pinus tabuliformis) 

using GBS and mitochondrial markers [81]. The outlier detection identified by SNPs was 

significantly associated with temperature, precipitation, soil type, etc., and the RAD showed 

that these differentiation-specific loci had significant local adaptation signals, which provided 

insights into further studying the origin of adaptive variation in P. tabulaeformis. Gao et al. 

(2021) used restriction site-associated DNA sequencing (RAD-seq) to analyze the ecological 

adaptation of the forest tree species Quercus acutissima [82]. GEAs showed that the genetic 

differentiation-specific loci of Q. acutissima were significantly correlated with precipitation. 

In addition, IBE results showed that the gene flow among Q. acutissima populations is 

constrained by natural selection and ecological adaptation, which resulted in adaptive 

differentiation of some genetic loci and phenotypes. This study is of great significance for 

understanding the generation and maintenance mechanisms of genetic variation in forest tree 

species. Zhao et al. (2020) used exome capture sequencing to analyze the population structure 

and ecological adaptation of the key species Pinus densata inhabiting the Qinghai-Tibet 

Plateau [83]. After controlling for demographic processes, only c. 4% of loci were affected by 

selection and allele surfing, and GEAs revealed that the adaptive potential of alpine pine to 

cope with future climate change is limited. 

The interaction between environmental heterogeneity and local adaptation is critical 

to understanding the evolutionary history of species. However, how precisely environmental 

heterogeneity drives population differentiation and how genomic variation contributes to 

adaptive evolution are still poorly understood for most species. Jia et al. (2020) used GBS to 

generate large-high-quality variants from Platycladus orientalis range-wide collection [84]. 

They clarified the pattern of the large-scale genetic variation of P. orientalis and established 

the genomic response model of this species under climate scenarios. Using GF, the authors 

identified the response patterns of different geographical populations P. orientalis and 

established utilization strategies of germplasm resources under future climate scenarios. Du 

and her colleagues [85,86] studied the tree species Quercus aquifolioides and carried out 

ecological adaptation research. By pool sequencing 65 candidate genes related to drought and 

oxygen stress, they identified 381 SNPs. GEAs showed that the genetic variation of the 
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Hengduan Mountains–Western Sichuan Plateau (HDM–WSP) and Tibet lineages are 

associated with the environment (precipitation) and geography (latitude and longitude), 

respectively. RONA showed that the HDM–WSP lineage had better adaptability to future 

precipitation variables. This study analyzed the effects of geographical/climatic factors on the 

ecological adaptation of Q. aquifolioides under climate change. The latest research on tree 

ecological adaptation showed that environmental variables play vital roles in adaptive genetic 

variation. Therefore, it is very important to determine the influences of environmental and 

landscape factors on the adaptive genetic variation of species. Landscape genomics opens the 

door to a better understanding of species’ ecological adaptation to the environments. 

4 Challenges of landscape genomics 

However, there are still huge challenges in using landscape genomics methods to study 

ecological adaptation. First, researchers commonly use landscape genomics to reveal 

ecological adaptation or adaptive genetic variation of species, but they often focus on the 

species or subspecies level. Studies at the community level are largely ignored. In the future, 

landscape genomics should be used to carry out ecological adaptation of multiple species 

located in the same area under the framework of landscape community genomics. This method 

is beneficial to obtain the response of these species to the eco-evolutionary dynamics of the 

shared terrestrial landscape or environments, and to deepen our understanding of ecological 

adaptation or adaptive genetic variation [87]. In the study of ecological adaptation at the 

community level, the main challenge is how to simulate their local adaptation patterns and the 

adaptation potentials to future climate change. The landscape community genomics using 

GDM, GF model, and RONA might help to solve the above problems possibly. 

Secondly, for the analysis of ecological adaptation using landscape genomics, there 

will never be a single analytical approach that is optimal for addressing all questions belonging 

to landscape genomics, and interdisciplinary collaboration will continue to be a cornerstone 

for progress in landscape genomics. The various array of approaches, with their different 

assumptions, advantages and limitations, also makes it challenging to synthesize results 

obtained from landscape genomics studies [13,39,88,89], thus a comprehensive explanation 

should be given in the specific analysis. 

Finally, in the existing ecological adaptation studies using landscape genomics, 

researchers often underestimate the impacts of sampling strategies on the final results. Too 

often, genetic and genomic data are gathered for other research purposes, and landscape 
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genomic questions are only considered after sampling is finished [90]. In future studies on 

ecological adaptation using landscape genomics, sampling strategies must consider the eco-

evolutionary dynamics of species and the representativeness of the environmental variability 

that species experience [13,90-92]. Recent studies have highlighted the importance of selecting 

an appropriate sample size in landscape genomics. To retrieve obvious adaptive signals, for 

species with limited dispersal ability, sample sizes above 200 units (sample size per location) 

are generally sufficient to detect most adaptive signals, while in random mating populations, 

this threshold should be increased to 400 units [93]. In addition, researchers necessitate 

considering the genomics resources available for the study of organisms in the future (such as 

whether there is a reference genome). Although there are already numerous genome-level 

sequencing methods that can be used in the study of ecological adaptation (such as RAD, 

transcriptome sequencing, etc.). The number of SNPs and whether adaptive loci with strong 

selection signals can be detected are strongly related to the selection of sequencing strategies 

[94]. 

In closing, when using landscape genomics methods in the future, population genetics 

methods should first be used to study species’ genetic diversity, population structure, and gene 

flow within and between populations, to understand the demographic history of species. Based 

on the in-depth understanding of the evolutionary history of species, appropriate sampling 

strategies and analysis methods should be employed to evaluate the associations between 

genomic data and climate variables, we can explore the adaptability of species or communities 

to the environment and understand their eco-evolutionary dynamics. Finally, RONA can be 

used to predict future fate and reveal its adaptation mechanism of species, providing guidelines 

for the scientific protection of species and decision-making on precise management 

interventions. The landscape genomics research of protected species with adaptive genetic 

variation can be used for providing theoretical bases of corresponding conservation measures 

(such as adopting in situ conservation or ex situ conservation, using assisted gene flow or 

assisted migration [10,95]). 

 

5 Summary 

Understanding the genetic basis of ecological adaptation is the key issue of molecular ecology 

and evolutionary biology. By integrating the theories and methods of ecological adaptation 

research, this review proposes that it is necessary to use population genetics methods to 

understand species distribution patterns and the evolutionary history of species. Meanwhile, 
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combined with the methods of landscape genomics, this review recommends researchers 

integrate genetic variation, environmental factors, and landscape characteristics to illuminate 

the interactions between species’ adaptive genetic variation and landscape characteristics. 

Projecting the adaptation potential under alternative climate scenarios via a newly developed 

RONA method can clarify the response mechanism of species’ adaptive genetic variation 

under different spatial-temporal scales, which may provide new avenues for dissecting the 

ecological adaptation of species’ ongoing rapid climate change. 
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