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Genomic landscape of the global oak phylogeny
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Summary

o The tree of life is highly reticulate, with the history of population divergence emerging from
populations of gene phylogenies that reflect histories of introgression, lineage sorting and
divergence. In this study, we investigate global patterns of oak diversity and test the hypothe-
sis that there are regions of the oak genome that are broadly informative about phylogeny.

e We utilize fossil data and restriction-site associated DNA sequencing (RAD-seq) for 632
individuals representing nearly 250 Quercus species to infer a time-calibrated phylogeny of
the world's oaks. We use a reversible-jump Markov chain Monte Carlo method to reconstruct
shifts in lineage diversification rates, accounting for among-clade sampling biases. We then
map the >20000 RAD-seq loci back to an annotated oak genome and investigate genomic
distribution of introgression and phylogenetic support across the phylogeny.

e Oak lineages have diversified among geographic regions, followed by ecological divergence
within regions, in the Americas and Eurasia. Roughly 60% of oak diversity traces back to four
clades that experienced increases in net diversification, probably in response to climatic transi-
tions or ecological opportunity.

diversity. e The strong support for the phylogeny contrasts with high genomic heterogeneity in phylo-

genetic signal and introgression. Oaks are phylogenomic mosaics, and their diversity may in
fact depend on the gene flow that shapes the oak genome.

Introduction 'Boeckler.l, 2.017; 'Car}non & DPetit, 2019), a sy'stem.of 1nterbreeé—
ing species in which incomplete reproductive isolation may facili-

The tree of life exhibits reticulation from its base to its tips (Folk
etal., 2018; Quammen, 2018). Oaks (Quercus L., Fagaceae) are
no exception (Hipp, 2018). The botanical and evolutionary liter-

tate adaptive gene flow and species migration (Petit ez al., 2003;
Dodd & Afzal-Rafii, 2004; Leroy ez al., 2019). The oak genome
(Plomion eral, 2018) consequently tracks numerous unique
ature is rife with case studies of localized gene flow (Hardin,
1975; Whittemore & Schaal, 1991; McVay etal., 2017a; Kim
etal., 2018) and ancient introgression (McVay et al., 2017b; Kim
etal.,, 2018; Crowl etal., 2019) in oaks. Oaks have in fact been
held up as a paradigmatic syngameon (Hardin, 1975; Van Valen,
1976; Dodd & Afzal-Rafii, 2004; Cannon & Scher, 2017;

species-level phylogenetic histories that result from lineage sort-
ing and differential rates of introgression (Anderson, 1953; Eaton
etal., 2015; McVay etal., 2017b; Edelman ezal, 2018). Oak
genomes are mosaics of disparate phylogenetic histories (cf.
Paabo, 2003). Given the prevalence of hybridization in trees
globally (Petit & Hampe, 2006; Cannon & Lerdau, 2015),
understanding how these histories align with one another and

+This paper is dedicated to the memory of Michael Avishai (1935-2018), whether there are regions of the genome that track a common
founder of the Jerusalem Botanical Gardens and cherished colleague.
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evolutionary history is essential to understanding the prevalence
of adaptive gene flow and the phylogenetic history of forest trees.

Restriction-site associated DNA sequencing (RAD-seq; Miller
etal., 2007a,b; Lewis et al., 2007; Baird ez al., 2008; Ree & Hipp,
2015) has revolutionized our understanding of oak phylogeny in
the past 5yr (Hipp eral, 2014, 2018; Cavender-Bares eral.,
2015; Eaton etal., 2015; Fitz-Gibbon et al., 2017; Hipp, 2017;
Pham eral., 2017; Deng etal., 2018; Kim ezal., 2018; Ortego
etal., 2018; Jiang eral., 2019). Its ties to the genome, however,
have not been fully exploited because of the lack of an assembled
genome. While earlier studies explored the effects of gene identity
on phylogenetic informativeness (Hipp ez al., 2014) and genomic
heterogeneity in phylogenetic vs introgressive signals (McVay
etal., 2017a,b), they did not have access to a completed oak
genome. As a consequence, we do not understand the distribu-
tion of genomic breakpoints between histories of introgression
and histories of population divergence. Moreover, no studies to
date have brought together a comprehensive sampling of taxa to
investigate the history of diversification across the genus.

In this study, we integrate a phylogenomic sampling of ¢. 60%
of the world’s oaks with the annotated, chromosome-level
Quercus robur genome (Plomion etal., 2016, 2018) to test the
hypothesis that there are regions of the genome that are globally
informative about Quercus phylogeny, i.e. regions that define oak
lineages across the phylogeny. We analyze previously published
RAD-seq data for 427 sequenced individuals sampled from
across the oak phylogeny and new RAD-seq data for an addi-
tional 205 individuals to investigate the global oak phylogenomic
mosaic. Using a time-calibrated one-tip-per-species tree novel to
this study, we also test the hypothesis that the high diversity of
oaks in Mexico and eastern China is a consequence of high diver-
sification rates. Finally, we show that the consensus of the evolu-
tionary histories of >20000 RAD-seq loci matches our
understanding of oak evolution based on morphological informa-
tion from extant and fossil species in spite of broadly conflicting
individual locus genealogies.

Materials and Methods

Previously published RAD-seq and new RAD-seq:
sequencing and clustering

Data from previously published RAD-seq phylogenetic studies were
analyzed alongside new RAD-seq data, for a total of 632 individu-
als (Supporting Information Table S1). RAD-seq data were gener-
ated as described in the previous studies (see methods in Hipp
et al., 2014). New data were from library preparations conducted at
Floragenex, Inc. (Portland, OR, USA) following the methods of
Baird ez al. (2008) with Psd, barcoded by individual, and sequenced
in 100-150 bp single-end reactions on an Illumina Genome Ana-
lyzer IIx at Floragenex, or on an Illumina HiSeq 2500 or HiSeq
4000 at the University of Oregon Genomic Facility.

FastqQ files were demultiplexed and filtered to remove
sequences with > 5 bases of quality score <20 and assembled into
loci for phylogenetic analysis using IpyraD 0.7.23 (Eaton, 2014)
at 85% sequence similarity. Consensus sequences for each
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individual for each locus were then clustered across individuals,
retaining loci present in at least four individuals and possessing a
maximum of 20 single nucleotide polymorphisms (SNPs) and
eight indels across individuals. The dataset was filtered to loci
with a minimum of 15 individuals each, for a total of 49 991 loci.
Data were imported into R using the rapami package (Hipp
etal., 2014) for downstream analysis.

RAD-seq loci were mapped back to the latest version of the
Q. robur haploid genome (HaPLOME 2.3; https://urgi.versailles.
inra.fr/Data/Genome/Genome-data-access)  (Plomion  ezal,
2018). The Q. robur genome has been assembled into 12 pseu-
dochromosomes corresponding to the 12 observed Quercus chro-
mosomes, plus a set of 538 unassigned scaffolds. Mapping was
performed using Brast+ 2.8.1 (Camacho eral, 2009). We fil-
tered alignments based on expected (£) values (E-value < 107°),
alignment length (> 80% of the length of the loci) and percentage
identity (>80%). For each locus, the best alignment was kept.
All sequence data analyzed in this paper are available as Fastq
files from NCBI’s Short Read Archive (Table S1), and aligned
loci and additional data and scripts for all analysis are available
from hteps://github.com/andrew-hipp/global-oaks-2019. Analy-
sis details are given in Methods S1.

Phylogenetic analysis

Maximum likelihood (ML) phylogenetic analyses were con-
ducted in RAXML v8.2.4 (Stamatakis, 2014) using the
GTRCAT implementation of the general time reversible model
of nucleotide evolution, an approximation of the GTR+y model
that affords substantial savings in computational time for large
phylogenetic datasets, such as the current one (Stamatakis, 2006),
with branch support assessed using RELL bootstrapping (Minh
etal., 2013). For the phylogeny including all tips (Fig. S1), analy-
sis was unconstrained, and we used the taxonomic disparity index
(TDI) of Pham eral (2016) to quantify nonmonophyly by
species. Topology within the white oaks of sections Ponticae,
Virentes and Quercus (hereafter ‘white oaks 5./, contrasted with
‘white oaks s.s.” for just section Quercus) was observed to be at
odds with previous studies (McVay eral., 2017a,b; Hipp ezal.,
2018; Crowl eral., 2019) that have shown the topology of the
white oaks 5./ to be sensitive to taxon and locus sampling. For
dating, samples were pruned to one sample per named species,
favoring samples with the most loci, except for species in which
variable position of samples from different populations was
deemed to represent cryptic diversity, in which case more than
one exemplar was retained. The resulting one-tip-per-species tree
(hereafter ‘singletons tree’) was estimated in RAXML using a phy-
logenetic constraint (Manos, 2016; McVay ez al., 2017b; Hipp
etal., 2018) available in the scripts and datasets posted online
(https://github.com/andrew-hipp/global-oaks-2019). The
remainder of the tree was unconstrained and conforms closely to
previous topologies.

We utilized neighbor-net (Bryant & Moulton, 2004) to visual-
ize overall patterns of molecular genetic diversity. Likelihood-
based methods (Solis-Lemus & Ané, 2016; Solis-Lemus ez al.,
2017; Wen et al., 2018; Zhang ez al., 2018) that we have utilized
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on smaller oak datasets (Eaton ezal, 2015; Hauser etal., 2017;
McVay etal., 2017a,b; Crowl ez al., 2019) proved computation-
ally intractable for the current dataset. Consequently, we utilized
a splits network inferred with SpLITSTREE v.14.3 (Huson &
Bryant, 2006) based on the maximum-likelihood (GTR+y) pair-
wise distance matrix estimated in RAXML and the same datasets
utilized for the singletons tree. Full phylogenetic analysis details
are given in Methods S1.

Calibration of singletons tree

Branch lengths on the tree were inferred using penalized likeli-
hood under a relaxed model, with rates uncorrelated among
branches (Paradis, 2013), and a correlated rates model (which
corresponds to the penalized likelihood approach of Sanderson,
2002) as implemented in the chronos function of ArE v 5.1 (Par-
adis et al., 2004) of R v 3.4.4 (‘Someone to Lean On’) (R Core
Team, 2018). Nodes were calibrated either using eight fossil cali-
brations, corresponding to the crown of the genus and seven key
clades (Fig. S2a; Table 1), or more conservatively as stem ages,
using a subset of five fossils (Fig. S2b; Table 1). The two calibra-
tions (referred to as the ‘crown calibration” and ‘stem calibration’
respectively) bracket what we consider to be plausible age ranges
for the tree. A separate estimate of the best-fit A, the penalized
likelihood smoothing parameter, for the correlated clock model
was made using cross-validation as implemented in the chronopl
function of APE, and that value of A was used for both the relaxed
and the correlated clocks. Comparison of ¢IC was used to iden-
tify the best-fit model for each value of A. Analysis details are
given in Methods S1.

Transitions in lineage diversification rates were estimated using
the speciation—extinction model implemented in Bayesian Analy-
sis of Macroevolutionary Mixtures (BAMM) (Rabosky, 2014);
the BAMMTOOLS R package was used for configuration of
Markov chain Monte Carlo (MCMC) analysis and downstream
analysis of MCMC results. Priors using the
SETBAMMPRIORS function. Analyses were run for 4 x 10° gener-
ations, saving every 2000 generations, with four chains per

were  set

MCMC analysis. To visualize changes in standing diversity over
time for the different sections, we plotted lineage through time
(LTT) plots by section against 8'*O values reported by Zachos
etal. (2001) as a temperature proxy. For the purposes of

visualizing clade sizes on the LTT plot only, missing taxa were
added at random positions in each of four undersampled clades:
Cyclobalanapsis (56 tips), section lex (11 tips), Erythromexicana
(50 tips) and Leucomexicana (54 tips). Analysis details are given
in Methods S1 and in scripts and data deposited at hetps://
github.com/andrew-hipp/global-oaks-2019.

Investigating the genomic landscape of oak evolutionary
history

The introgressive status of loci for two known introgression
events involving the Eurasian white oaks (McVay eral., 2017b)
and the western North American lobed-leaf white oaks
(McVay eral, 2017a) was assessed by calculating the likeli-
hood of phylogenies inferred for each locus under the con-
straint of the inferred divergence history (species tree) and the
gene flow history at odds with that divergence history, as
inferred in the studies cited above. These two cases are of par-
ticular interest because they are well studied, and lineage sort-
ing has been ruled out in the above studies as an explanation
of incongruence between the alternative topologies we test.
The position of loci with a relative support of at least 2 log-
likelihood points for one history relative to the other were
mapped back to the Q. robur genome (Plomion eral., 2018).
Analysis details are given in Methods S1.

To identify the relative phylogenetic informativeness of loci,
two tests were conducted based on the singletons tree. First,
the ML topology was estimated in RAXML for each of 2711
mapped, rootable loci of at least 10 individuals that resolved
at least one bipartition. Overall, locus trees resolved an aver-
age of 4.48 (£ 1.82 SD) nodes, with a maximum of 15 and a
median of 4. These were compared with the total-evidence
tree using quartet similarities using the tqDist algorithm
(Sand eral, 2014) in the QUARTET package (Smith, 2019).
We used as our similarity metric the number of quartets
resolved the same way for both the locus tree and the whole
singletons tree divided by the sum of quartets resolved the
same or differently. These same locus trees were then mapped
back to the singletons tree using phyparts (Smith ezal., 2015),
which for all branches on a single tree identifies how many
individual locus trees support or reject that branch. We tested
for genomic autocorrelation in phylogenetic signal using spline

Table 1 Fossil calibrations used in this study, with nodes indicated as the most recent common ancestor (MRCA) of selected taxa.

Node Max. (Ma) Min. (Ma) Crown calibration node Stem calibration node

Quercus — genus 56 56 Quercus Quercus|Notholithocarpus

Section Lobatae 47.87 47.87 Quercus_agrifolia| Quercus_emoryi Quercus_agrifolia|Quercus_arizonica
Section Cyclobalanopsis 48.32 48.32 Quercus_gilva|Quercus_acuta Quercus_gilva|Quercus_rehderiana

Section Quercus 45 45

Section /lex 47.8 37.8
Section /lex —in part 355 334
Section Cerris —in part 34 30

Section Cerris — European clade 23 20.5

Quercus_lobata]Quercus_arizonica
Quercus_franchetiilQuercus_rehderiana
Quercus_rehderiana]Quercus_semecarpifolia
Quercus_cheniilQuercus_acutissima
Quercus_crenata|Quercus_cerris

Quercus_pontica]Quercus_arizonica

Quercus_franchetiilQuercus_cerris

Max. and min. indicate the maximum and minimum ages for calibrations. Crown calibration node and stem calibration node indicate the taxa whose
MRCA:s are the calibration points for the crown and stem calibration analyses respectively. References are given in Supporting Information Table S2.
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correlograms (Bjernstad & Falck, 2001; Bjernstad, 2008),
with each chromosome tested independently. Analysis details
are given in Methods SI.

Results

RAD-seq data matrix

RAD-seq library preparation and sequencing yielded a mean of
1.685 x 10° £ 1.104 x 10° (SD) raw reads per individual; of
these, >99.8% (1.683 x 10°+ 1.104 x 10°) passed quality fil-
ters. The total number of clusters per individual before clustering
across individuals was 101 895 + 58 810, with a mean depth of
17.2 £ 11.2 sequences per individual and cluster. Clusters with
>10000 sequences per individual were discarded. Mean esti-
mated heterozygosity by individual was 0.0135 4 0.0027, and
sequencing error rate was 0.0020 £ 0.0004. After clustering, a
total of 49 991 loci were present in at least 15 individuals each.
Each individual in the final dataset possessed 6.48 £ 2.48% of all
clustered loci. The total data matrix was 4.352 x 10° aligned
nucleotides in width. The singletons dataset was composed of
22 432 loci present in at least 15 individuals, making up a dataset
of 1.970 x 10° aligned nucleotides.

All-tips tree

The all-tips tree (Fig. S1) comprised 246 named Quercus species,
of which 99 have a single sample. The remaining 147 species
have an average of 3.54 £ 2.72 (SD) samples each. Ninety-seven
of the 147 species with more than one sample cohere for all sam-
ples, and only 13 have a TDI (Pham ezal., 2016) of 10 or more
(Table S3), suggesting taxonomic problems beyond difficulties in
distinguishing very close relatives. All but four are Mexican
species or species split between the southwestern USA and Mex-
ico (see Discussion). Of the others, the largest TDI values are for
Q. stellata and Q. parvula of North America, and Q. hartwissiana
and Q. petraea of western Eurasia, all with a complicated taxo-
nomic history entailing recognition of numerous infraspecies
and/or synonyms (Nixon & Muller, 1997; Hauser etal, 2017;
Govaerts et al., 2019).

The topology of the all-tips tree closely matches previous
analyses based on fewer taxa (McVay eral., 2017b; Deng ezal.,
2018; Hipp etal., 2018) for all sections except sections Quercus
and Virentes. Unlike previous analyses, the all-tips topology
embeds the long-branched section Virentes within section
Quercus, sister to a clade comprising the southwest US and
Mexican clade and the Stellatae clade. This appears to be an
artifact of clustering, as previous analyses of the same taxa do
not reveal this topology, and unconstrained analysis of the sin-
gletons dataset also recovers this aberrant topology. As a conse-
quence, we consider the large-scale topology of the white oaks
s.l. not to be reliable in the all-tips tree, and as this topology is
well resolved in previous studies (McVay eral, 2017a,b), we
constrain the singletons topology as described in the Materials
and Methods section. We leave an investigation of the causes of
this artifact to future study.
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Topology and timing of the oak phylogeny

Between the correlated and relaxed models of molecular rate
heterogeneity, the correlated rates model (i.e. the penalized likeli-
hood approach of Sanderson, 2002) is consistently favored using
GIC except at =0, when the models are identical (Table S4).
Although dating estimates differ little from A=0 to A =10,
cross-validation shows the lowest sensitivity of taxon removal on
dating estimates at A =1.

Analyses with the crown-age calibrations (Figs 1, S3a) sug-
gest an older origin of most sections than proposed in previ-
ous studies (Cavender-Bares eral, 2015; Deng eral, 2018;
Hipp etal, 2018), in part because in the current study we
had access to a more comprehensive fossil record for oaks,
including fossils used as age priors that pre-date those used in
carlier studies. Section Viremtes in our analysis has a crown
age of ¢ 30 million years (Ma), whereas Cavender-Bares et al.
(2015) estimated the crown age at 11 Ma. Even under the
stem-age calibrations (Figs1, S3b,c), we estimate the crown
age of Virentes at close to the Oligocene-Miocene boundary
(¢. 23 Ma), nearly twice as old as previous estimates. Sections
Quercus and  Lobatae had an Oligocene crown constraint
(31 Ma) in our previous work (Hipp ezal, 2018); in the cur-
rent study, they were constrained to a mid-Eocene origin
(45—48 Ma) for the crown calibration, while the stem calibra-
tion recovers a late Eocene origin for the red oaks (39 Ma)
while the white oaks drop to a mid-Oligocene crown age
(28 Ma). In a previous study of section Cyclobalanopsis, a
minimum age of 33 Ma was set as a constraint at the root of
subgenus Cerris, leading to a late Oligocene crown age for
section Cyclobalanopsis (Deng eral., 2018); by contrast, we
recover an early Eocene crown age (38 Ma) for the group
under the crown calibration, and late Eocene (36 Ma) under
the stem calibration. Given the high fossil density in Quercus
(Table 1 and references therein; also reviewed in part in Denk
& Grimm, 2009; Grimsson etal, 2015; Denk etal, 2017),
the potential for alternative interpretations of their placement,
and disparity among alternative methods for modeling (Par-
adis, 2013; Donoghue & Ziheng, 2016), we leave an investi-
gation of a broader range of dating scenarios to later studies.

White oaks s.s. are estimated in the crown calibration analysis
to have arrived in Eurasia at some point in the Oligocene, close
to the split between the section Ponticae sisters, which despite
their morphological similarity appear to have diverged from one
another nearly twice as long ago as the crown age of the Mexican
white oaks; under the stem calibration, the Eurasian white oaks
are approximately half the crown age of the Ponticae. Compared
with the two species of section Ponticae, the Mexican white oak
ancestor gave rise to an estimated 80 species in approximately
half the time. The Roburoids had divided into a European and
an East Asian clade by the early Miocene under the crown cali-
bration, the late Miocene under the stem calibration.

Under the diversification scenarios implied by both the crown
and the stem calibrations (Figs 1, 2), there are four relatively recent
and nearly simultaneous increases in diversification rate: the white

oaks of Mexico and Central America; the red oaks of Mexico and
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Central America; the Eurasian (Roburoid) white oaks; and the
Glauca, Semiserrata and Acuta clades of section Cyclobalanopsis. In
addition, the Eurasian white oaks, southeastern US white oaks (the
Stellatae clade), and southeastern USred oaks (the Laurifoliae
clade) show a smaller increase in diversification rate in both analy-
ses, and the clade of section /lex that includes the Himalayan and
Mediterranean species shows an increase in diversification rate with
the stem calibration. This result is robust to missing taxa, as we
find essentially the same clades increasing in rate even assuming
the 40% of missing taxa in our study were missing at random from
the tree (Fig. S3a—c), with the addition of a portion of section Zlex
and some of the eastern North American taxa as high-rate clades
under the global sampling proportions model.

Genomic arrangement of RAD-seq loci

A total of 39 860 loci aligned to at least one position on the oak
genome. The 12 pseudochromosomes (inferred linkage groups,
corresponding to the 12 Quercus chromosomes) as well as 360 scaf-
folds that did not map to the linkage groups were targeted by these
loci. A total of 19 468 loci mapped to a unique position on a scaf-
fold placed to one of the 12 oak genome pseudochromosomes, an
average of 1622.3 £575.4 (SD) per chromosome. Distances
between loci that are separated by > 300 bp (to eliminate any 100-
to 150-bp loci that might be sequenced in opposite directions from
the same restriction site) averaged 42769 £ 70939 bp, with a
median of 18308bp and a maximum of 1.60 x 10°bp. Of
mapped loci, 31.7 £ 8.1% overlapped with the boundaries of a
gene model (Fig. 3), despite the fact that only 10.1% of the
716 Mb of the Q. robur genome that falls within the 12 pseu-
dochromosomes falls within the endpoints of a gene model. A total
of 3443 (or 13.3%) of the estimated 25 808 Q. robur genes have at
least one RAD-seq locus within them.

2247 loci had taxon sampling appropriate to testing for intro-
gression involving Q. macrocarpa and Q. lobata (the Dumosae
alternative topologies); 2145 were suitable to testing for intro-
gression involving the Roburoid white oaks and Q. pontica (the
Roburoid alternative topologies); and 717 were suitable to testing
both. Because we were interested in investigating genomic over-
lap in support for different areas of the species tree, we limited
ourselves to the 717 loci that were potentially informative about
both. Of these, 410 mapped to one position on one of the
Q. robur pseudochromosomes; and of these, 319 exhibited a log-
likelihood difference of at least 2.0 between the better and more
poorly supported topology for the Dumosae hypothesis or the
Roburoid hypothesis, or both (Fig. 4). There was no correlation
between the Roburoid and Dumosae hypotheses (r=0.0367,
P=0.3771), meaning that loci that support or reject either of the
Roburoid hypotheses do not correlate with a particular Dumosae
hypothesis. Moreover, whether or not a locus is located within
one of the Q. robur gene models has no effect on whether it
recovers the introgression or the divergence history for the
Roburoid oaks (F]360=0.1373, P=0.7112) or the Dumosae
(F1.408=0.0002, P=0.9874).

Quartet similarity — the number of taxon quartets with a
topology shared between trees over the total number of quartets
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that both trees are informative about — between the RAD-seq
individual-locus trees and the singletons tree (Fig. S4) is similarly
not influenced by presence in one of the gene models presented
in the Q. robur genome (Plomion ez al., 2018) (Fi 5543 =0.1393,
P=0.7091) and shows no evidence of genomic autocorrelation
(Fig. S5). Rather, loci that support the tree are distributed across
the genome. The same is true using locus trees to investigate the
support for selected nodes of the phylogeny, all strongly sup-
ported (bootstrap support>95% for all nodes tested; Fig. S1)
(Fig. 5). The 2704 RAD-seq locus trees made 4796 branch-level
support claims and 26 022 conflict claims on the singletons tree,
of which 6341 total claims pertain to the nodes investigated,
ranging from 25 to 1033 per node (396.3 £277.2; Fig.5).
Locus-by-locus incongruence is high at this level: the proportion
of loci concordant with each node averages 0.2505 + 0.2398, but
the range is high, from >0.65 in sections Cerris and Virentes as
well as the genus as a whole to <0.05 in the Rubrae, Laurifoliae
and Leucomexicana clades (Table S5). There is no genomic auto-
correlation in support vs rejection of nodes in the singletons tree
by individual locus trees (as inferred using phyparts; Smith ez al.,
2015) (Fig. S6), but the correlation between the crown age of
clades investigated and the proportion of loci concordant with
the crown age is positive and weakly significant (r=0.4591,
P=0.0736; Fig. S7). Three clades stand out as outliers with a
high proportion of loci supporting divergence (outside the 95%
regression confidence interval): the genus as a whole, and sections
Cerris and [llex. This widespread genomic incongruence is
reflected in broad network-like reticulation in the neighbor-net
tree at the base of most clades (Fig. 6).

Discussion

Our analyses demonstrate that the diversity of oaks we observe
today reflects deep geographic separation of major clades within
the first 15 million years (Myr) after the origin of the genus, and
that standing species diversity arose mostly within the last
10 Myr, predominantly in four rapidly diversifying clades that
together account for ¢. 60% of the diversity of the genus. Previ-
ous work has demonstrated that American oak diversity was
shaped in large part by ecological opportunity, first by expansion
and modernization of broadleaved deciduous forests as tempera-
tures dropped following the early Miocene climatic optimum
(Graham, 2011), then by migration into the mountains of Mex-
ico (Cavender-Bares ez al., 2018; Hipp eral., 2018). The current
study deepens this understanding by demonstrating two increases
in diversification rates in Eurasia: one in the Eurasian white oaks,
which arrived from eastern North America 7.5-18 Ma to low
continental oak diversity, and no closely related oaks; and one in
the southeast Asian section Cyclobalanopsis, driven by changing
climates and the Himalayan orogeny (Deng ez al., 2018). At the
same time, our work demonstrates widespread genomic incon-
gruence in phylogenetic history, with alternative phylogenetic
histories interleaved across all linkage groups. Contrary to our
hypothesis at the outset of this study, there appear to be no
regions of the genome that on their own define the oak phy-
logeny. Instead, the primary divergence history of oaks (McVay
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Himalaya-Mediterranean
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Fig. 1 Singletons tree, calibrated using eight crown calibration fossils (solid lines) or five stem calibration fossils (dotted lines). Single exemplars per species
were analyzed using maximum likelihood; multiple samples are included for some species to represent cryptic or undescribed diversity (e.g. in Quercus
arizonica, Q. laeta, Q. conzattii) or named infraspecies (e.g. varieties of Quercus agrifolia and Q. parvula). Labels to the right of the tree indicate
subgenera (black) and sections (medium gray) following the latest taxonomy for the genus (Denk et al., 2017). Branch colors represent net diversification
rates estimated using a reversible-jump Markov-chain Monte Carlo (fMCMC) method in Bamm (Rabosky, 2014), integrating over uncertainty in the timing
and location of shifts in lineage diversification rates. fMCMC was conducted with explicit lineage-specific sampling proportions specified, and thus
accounts for the relatively low species sampling in the Mexican/Central American oaks and the southeast Asian section Cyclobalanopsis. Numbers in black
circles at each of four nodes indicate the posterior probability of a shift in diversification rate having occurred at that node. All bootstrap values are > 100
except for nodes marked with an asterisk, which are all 80-99 except for two: the most recent common ancestor (MRCA) of Q. costaricensis and

Q. humboldtii and the MRCA of Q. myrsinifolia and Q. salicina both have bootstrap values <5. Pli, Pliocene; Ple, Pleistocene; Q, Quaternary.
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within the genus Quercus for the preferred
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the 25 808 gene models reported for the
Q. robur genome (Plomion et al., 2018).

etal., 2017b; Crowl ez al., 2019) knits together and emerges from
the patchwork of histories that comprise the oak genome.

Topology and timing of the global oak phylogeny

Our work indicates that by the mid-Eocene (45 Ma), all Quercus
sections (fide Denk er al., 2017) had originated with the possible
exception of section Quercus, which under the stem calibrations
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Chromosome length * 20 000 (bp)

scenario arose at the Eocene—Oligocene boundary (33 Ma). Fol-
lowing this compressed period of crown radiation, diversification
rates spiked in the late Miocene to Pliocene, ¢. 10 Ma (Fig. 2),
primarily in southeast Asia, Mexico and the white oaks of Eura-
sia. Additional calibrations and a wider range of rate models bear
investigation, as do the potential effects of introgression on
reducing node age estimates for the most recent common ances-
tor of close relatives or increasing node age estimates if more
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Fig. 4 Genomic distribution of loci favoring alternative placements of the Roburoid white oaks and of Quercus lobata/Quercus macrocarpa. The 19 468
RAD-seq loci that map to a single position on one of the Quercus robur pseudochromosomes are represented by gray bands; chromosomal areas of darker
gray have a denser mapping of RAD-seq loci. Mapped beside the chromosomes are the positions of 319 RAD-seq loci with a log-likelihood difference of at
least 2 between trees constrained to be monophyletic for the Roburoids vs those placing the Roburoids with Q. pontica (203 loci); those differing by at
least 2 between trees constrained to be monophyletic for both the Dumosae and the Prinoids vs those placing Q. lobata or Q. macrocarpa in the opposing
clade (282 loci); or both (166 loci). These two hypotheses were selected because the topological differences have been demonstrated in previous studies
(McVay etal., 2017a,b; Crowl et al., 2019) to be a consequence of introgression, not lineage sorting alone. The relative mapping of these loci thus allows
us to study the distribution of loci that are informative about population divergence history vs ancient introgression in two closely related clades. The
mismatch between loci suggests that introgression is not genomically conserved.

distant relatives introgress. However, the eight fossil calibrations
that we utilize here, and the two alternative methods of calibrat-
ing the tree (Fig. S3a—c), already bracket a wide range of plausible
diversification times for the genus, and we consequently consider
our diversification estimates to be robust.

While Quercus arose at around the early Eocene climatic opti-
mum (the earliest known Quercus fossil is pollen from Sankt
Pankratz, Austria, 47°45'N, ¢. 56 Ma; Hofmann ezal, 2011),
early fossils range as far north as Axel Heiberg Island in far north-
ern Canada, which at 79°N (both modern and paleolatitude in
early Eocene; Scotese, 2014) is nearly 20° further north than the
northernmost contemporary oak populations. As it followed the
cooling climate southward, the genus remained largely a lineage
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of the northern temperate zone. Some species of sections Virentes,
Lobatae and Quercus inhabit tropical climates, but even these pos-
sess physiological adaptations that reflect their temperate ancestry
(Cavender-Bares, 2019). In Eurasia, section Cyclobalanopsis dom-
inates in subtropical evergreen broadleaved forests (Deng ez al.,
2018), but the sister sections Cerris and lex are temperate to
Mediterranean.

Climatic conservatism structures the geographic distribution
of oak clades at several levels. Geographic patterns among and
within major clades in the American oaks (subgenus Quercus)
have already been studied in detail, with geographic differentia-
tion among the western USA, the eastern USA, and the south-
western USA and Mexico/Central America in each of two
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represented in this figure. Dark bands
indicate RAD-seq loci that support a node;
light bands indicate loci that conflict with it.

sect. Cyclobalanopsis

sections occurring approximately simultaneously (Hipp ezal.,
2018). The current phylogeny makes clear that in the Eurasian
white oaks of section Quercus, the Roburoid clade, the morpho-
logically distinctive Mediterranean, dry-adapted species often
treated as subsection Galliferae (T'schan & Denk, 2012), are dis-
tributed among all four subclades, suggesting that adaptations to
the Mediterranean climate are convergent within the Roburoid
clade: species within clades are mostly separated by ecology, not
geography. Likewise, the western Eurasian members of section
Ilex form an inclusive subtree, and the geographically most dis-
tant species of the section are genetically most distinct (Fig. 6).
Geographic structuring is evident at even fine phylogenetic scales.
In section Cerris, for example, the east and west Eurasian species
group in sister clades; within these latter species, the western
Mediterranean Q. crenata and Q. suber ‘corkish oaks’, the Near
East ‘Aegilops’ oaks (Q. brantii, Q. ithaburensis, Q. macrolepis),
and the remaining central-eastern Mediterranean members of
the section are clearly separated. Within section Quercus, the
North American Prinoids and Albae form a grade, reflecting
diversification in North America pre-dating dispersal of the
Roburoid ancestor back to Eurasia. Once established in Eurasia,
this lineage then diverged into East Asian and western Eurasian
sister clades, ¢. 10 Myr after isolation from its North American
ancestors. Geography is imprinted on the oak phylogeny across
clades, time periods and continents.

Despite the older crown-age inferences in the current study in
comparison to the RAD-seq studies of 2015-2018, relative dates
in the present study confirm earlier results that the American oaks
increased in diversification rate as they entered Mexico. It broad-
ens this perspective with a global sample, providing evidence that
the relative diversification rate of the Glauca, Acuta and Semiser-
rata clades of the semitropical southeast Asian section
Cyclobalanopsis is comparable to if not higher than the Mexican
diversification. The Eurasian Roburoid white oaks also show an
increased rate of diversification. It is worth noting that the crown
age of the Roburoid clade as a whole may be younger than our
inferences, as fossil data raise some questions as to whether the
Old World Roburoids were already isolated by the early
Oligocene. Eocene section Quercus from Axel Heiberg Island
(Canada), for example, appears to be closely allied with East
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Asian white oaks, and Quercus firubjelmi from the Paleogene of
Alaska and central Asia might belong to any of the modern New
World or Old World white oak lineages, as might the early
Oligocene  Quercus kodairae and Q. kobatakei from Japan
(Camus, 1936, 1938; Tanai & Uemura, 1994; Menitsky, 2005;
Denk & Grimm, 2010; Tschan & Denk, 2012). Whereas previ-
ous analysis of Fagus (Fagaceae) found an unambiguous deep
split between North American and Eurasian beech species that
was also backed by fossils (Renner ez al., 2016), the fossil data we
have to date do not conclusively pin down the divergence
between the North American and Eurasian white oaks. By con-
trast, the inferred early Miocene split between western Eurasian
and East Asian white oaks is compatible with fossil evidence
(Denk & Grimm, 2010), lending support to the observed
increase in diversification rates observed in this study.

Taxonomy of the Mexican and Central American oaks

The generally high species coherence we observe in the all-tips tree
provides strong evidence that oak species are genetically coherent
biological entities. The fact that 97 of the 147 species with more
than one sample cohere for all samples provides the broadest test
to date of species coherence in oaks. The majority of species that
do not exhibit coherence are from Mexico. Two sets of examples
suggest that the Mexican oaks, while having been the focus of
extensive taxonomic study (Trelease, 1924; Spellenberg & Bacon,
1996; Spellenberg eral, 1998; Gonzilez-Villarreal, 2003; Valen-
cia-Avalos, 2004; de Beaulieu & Lamant, 2010), may harbor even
higher species diversity than current estimates. The examples of
Quercus laeta (M. C. Gonzélez-Elizondo et al., unpublished) and
Q. conzartii (McCauley etal, 2019; R. A. McCauley & K.
Oyama, unpublished) exemplify a problem likely to be common
in Mexican oaks. Both species are represented by samples from
northern and central to southern Mexico. Researchers working
with them have noticed that northern and southern populations
differ and may constitute separate species as our molecular data
suggest. These samples are from two centers of Mexican oak diver-
sity (Torres-Miranda ezal, 2011, 2013; Rodriguez-Correa ez al.,
2015) and may reflect even higher species diversity in areas already
known for high diversity. Notably, one of the youngest groups in
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Fig. 6 Neighbor-net, planar (meta-)phylogenetic network based on pairwise maximum-likelihood (ML) distances. Members of the major clades with
unambiguous (tree) support (cf. Fig. 1) are clustered. All currently accepted sections are color-coded; edge bundles defining neighborhoods corresponding
to sections and infrasectional clades are colored accordingly. Main biogeographic splits within each section are indicated by dotted gray lines. The graph
depicts the variance in inter- and intrasectional genetic diversity patterns. The most genetically unique clades within each subgenus (sect. Lobatae for
subgenus Quercus; sect. Cerris for subgenus Cerris) are placed on the right side of the graph; the distance to the spider-web-like center of the graph,
which in this case may represent the point of origin (being also the midpoint between all tips and the connection of both subgenera) reflects the
corresponding phylogenetic root-tip distances observed in the ML tree. Tree-like portions may indicate bottleneck situations in the formation of a clade;
fan-like portions reflect potential genetic gradients developed during unhindered radiation (geographic expansion; note, e.g. the position of Texan white
and red oaks; strict west—east ordering within section /lex), that is absence of major evolutionary bottlenecks.

the white oaks is located in the Sierra Madre Occidental, which section Lobatae complex involving Q. eugeniifolia, Q. benthamii,
harbors great habitat diversity in relatively small areas (Torres- Q. cortesii and Q. lowilliamsii has a complicated taxonomic his-
Morales ezal, 2010). Our data raise the question of whether the tory (Quezada Aguilar eral, 2016). The current work draws
rugged and relatively young topography, a product of magmatism  attention to the possibility that Central American oak diversity

and subduction processes that lasted until 12 Ma (Ferrari ezal,  and the role of Central American geology in Neotropical oak
2018), and the convergence of temperate and tropical climates diversification has been underestimated (Cardenes-Sandi ez al,
shaped the high diversification rates in this region. 2019), overshadowed as they have been by interest in the Mexi-

Several other cases of confusing taxonomy involving Mexican can oak diversification (Quezada Aguilar eral, 2017). In the

and Central American species are less clear. For example, the white oaks s.s. (section Quercus), cases such as Q. insignis and
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Q. corrugata seem even more obscure. Field observations (by
H.G.-C.) suggest subtle differences between Q. insignis, a species
of conservation concern from Jalisco, Oaxaca, Chiapas and Ver-
acruz (Jerome, 2018), and Q. corrugata (from Chiapas and Oax-
aca), but our molecular data are inconclusive. In general, the
taxonomy of the recently diverged or still diverging Mexican
species is particularly complicated because of extensive hybridiza-
tion and introgression, even among relatively distantly related
species  (Spellenberg, 1995; Bacon & Spellenberg, 1996;
Gonzilez-Rodriguez ez al., 2004; Bacon eral, 2011), and the
dynamics of recent or ongoing speciation.

Rapid diversification of Eurasian white oaks

Among the long-studied oaks of Eurasia (Camus, 1936, 1938,
1952; Schwarz, 1993; Menitsky, 2005), the data presented here
point to the important role of ecological and morphological con-
vergence among unrelated oaks. The phylogeny of the Eurasian
white oaks (the Roburoid clade of section Quercus) has not previ-
ously been addressed in detail, despite their importance to our
understanding of oak biodiversity and biology (cf. Kremer ezal.,
1991; Dumolin-Lapegue eral., 1997; Petit eral., 1997; Leroy
etal., 2017, and references therein). Previous work has sampled a
maximum of 14 Roburoid species (Hubert ez al., 2014), but not
recovered the monophyly of the clade, much less relationships
among species. Our study includes 23 of the estimated 25
Roburoid white oak species, the strongest sampling to date. The
late Miocene increase in diversification rate inferred in our study
at the base of the western Eurasian white oaks clade is particularly
exciting, as it is one of only four major upticks in diversification
inferred in our study. Our sampling of northern temperate white
and red oaks is almost complete, and we have accounted for sam-
pling bias in our diversification analyses, making it unlikely that
the increase in diversification rate detected here is artifactual. The
fact that the Roburoids are a northern temperate clade makes
their radiation notable.

The increase in diversification rate in the Roburoids parallels
the sympatric diversification of red and white oaks in North
America, with divergence within clades and geographic regions
accompanying convergence between clades (Cavender-Bares
etal., 2018). The western Eurasian white oaks are ecologically
diverse, ranging from lowland swamp to Mediterranean scrub,
and from mesic lowland forests to subalpine timberline (de
Beaulieu & Lamant, 2010). The European Roburoid clades are
not readily diagnosable morphologically, and the morphological
and ecological convergence among clades has led to taxonomic
confusion. Our study demonstrates that across the genus, ecologi-
cal diversification within clades has shaped diversification.

Genomic landscape of the global oak phylogeny

The current study uses mapped phylogenomic markers to
demonstrate that the oak tree of life is etched broadly across the
genome. Previous work has demonstrated that ¢. 19% of RAD-
seq loci were associated with expressed sequence tags (ESTs)
(Hipp etal., 2014), but that the EST-associated RAD-seq loci
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analyzed alone did not yield a topology that was different or dif-
ferently supported from the RAD-seq loci not associated with
EST markers, and that they were not differently apportioned to
the base or the tips of the phylogeny (which might have suggested
that RAD-seq loci associated with coding regions were more or
less conservative or more or less homoplasious than the remain-
der). In the current study, 6099 (31.3%) of RAD-seq loci in our
dataset that map uniquely to one position in the genome do so in
or overlapping with a predicted gene in the Q. robur genome (as
expected from a methylation-sensitive restriction enzyme; Rabi-
nowicz et al., 2005; Pegadaraju et al., 2013). Our work demon-
strates that gene-based RAD-seq loci do not differ from nongene-
based RAD-seq loci in similarity to the consensus tree or on
introgression rates in the Roburoids and the Dumosae. Gene
identity tells us little or nothing about how reliably a region of
the genome records phylogenetic history.

At the same time, nonsignificant correlation between loci that
strongly differentiate alternative topologies in the Dumosae and
Roburoids suggests that histories of introgression and histories of
population divergence for different nodes of the oak phylogeny are
not genomically correlated with one another. There is also no evi-
dence of genomic autocorrelation of phylogenetic informativeness
in our study, despite the fact that our study has more mapped
markers that significantly differentiate topologies in at least one of
these parts of the tree than a previous study investigating genomic
architecture of differentiation at the species level (V=158 mapped
markers with known Ggr; Scotti-Saintagne ezal, 2004). Our
hypothesis that there are particular genes or regions of the genome
that define the oak phylogeny globally appears to be incorrect:
rather, the phylogenetic history of oaks is defined by different
genes in different lineages, making the evolutionary history of oaks
a phylogenetic and genomic mosaic. The effort to find a single best
suite of genes for phylogenetic or population genetic inference
across the oak genus is thus unlikely to be successful, although
markers can clearly be designed for individual clades (Guichoux
etal., 2011; Fitzek et al,, 2018). What is perhaps most remarkable
is that this heterogeneity of histories covarying independently
along the oak genome yields, in aggregate, an evolutionary history
of the complex genus that mirrors the morphological and ecologi-
cal diversity of living and fossil oak species.

Conclusion

Questions about the genomic architecture of population differen-
tiation and speciation are generally asked at fine scales (Leroy
etal., 2017, 2018), at the point at which population-level pro-
directly shape genomic differendation. However,
microevolution leaves an imprint in the phylogeny; when such

CEssEs

impressions persist, they can often be detected using topological
methods that may be sensitive even to introgression along inter-
nal phylogenetic branches (Eaton eral, 2015; Solis-Lemus &
Ané, 2016; McVay eral, 2017b). With multiple Fagaceae
genomes now becoming available (Staton eral, 2015; Plomion
etal., 2016, 2018; Sork ez al., 2016; Ramos ez al., 2018), we may
soon be able to detangle the mosaic history of oaks and under-
stand what story each gene tells. The current study makes clear

New Phytologist (2019)
www.newphytologist.com



12 Research

that the phylogeny we unravel will neither be unitary nor told by
a small subset of the genome, as the regions of the genome cap-
turing the divergence history for one clade are not the regions
capturing the divergence history of another. Understanding phy-
logenetic history in the face of this variation is only one problem.
It will be followed by a greater one: how do we interpret the his-
tory of oak diversification in space and time if it is really a collec-
tion of diverse histories from different regions of the genome, all
reflecting different evolutionary pathways, all equally real?
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